原子操作类AtomicInteger详解

简介:对于java中的运算操作,例如自增或自减,若没有进行额外的同步操作,在多线程环境下就是线程不安全的。i++解析为 i = i+1,明显不具备原子性,多线程并发共享这个变量时必定会出问题。

举例说明:

public class AtomicIntegerTest {
 
    private static final int THREADS_CONUT = 20;
    public static int count = 0;
 
    public static void increase() {
        count++;
    }
 
    public static void main(String[] args) {
        Thread[] threads = new Thread[THREADS_CONUT];
        for (int i = 0; i < THREADS_CONUT; i++) {
            threads[i] = new Thread(new Runnable() {
                @Override
                public void run() {
                    for (int i = 0; i < 1000; i++) {
                        increase();
                    }
                }
            });
            threads[i].start();
        }
 
        while (Thread.activeCount() > 1) {
            Thread.yield();
        }
        System.out.println(count);
    }
}

这里运行了20个线程,每个线程对count变量进行1000次自增操作,如果上面这段代码能够正常并发的话,最后的结果应该是20000才对,但实际结果却发现每次运行的结果都不相同,都是一个小于20000的数字。

接下来使用AtomicInteger,如下代码:

import java.util.concurrent.atomic.AtomicInteger;
 
public class AtomicIntegerTest {
 
    private static final int THREADS_CONUT = 20;
    public static AtomicInteger count = new AtomicInteger(0);
 
    public static void increase() {
        count.incrementAndGet();
    }
 
    public static void main(String[] args) {
        Thread[] threads = new Thread[THREADS_CONUT];
        for (int i = 0; i < THREADS_CONUT; i++) {
            threads[i] = new Thread(new Runnable() {
                @Override
                public void run() {
                    for (int i = 0; i < 1000; i++) {
                        increase();
                    }
                }
            });
            threads[i].start();
        }
 
        while (Thread.activeCount() > 1) {
            Thread.yield();
        }
        System.out.println(count);
    }
}

结果每次都输出20000,得到正确的结论。

那为什么会是这样的结果呢?

非阻塞同步

同步:多线程并发访问共享数据时,保证共享数据再同一时刻只被一个或一些线程使用。

我们知道,阻塞同步和非阻塞同步都是实现线程安全的两个保障手段,非阻塞同步对于阻塞同步而言主要解决了阻塞同步中线程阻塞和唤醒带来的性能问题,那什么叫做非阻塞同步呢?在并发环境下,某个线程对共享变量先进行操作,如果没有其他线程争用共享数据那操作就成功;如果存在数据的争用冲突,那就才去补偿措施,比如不断的重试机制,直到成功为止,因为这种乐观的并发策略不需要把线程挂起,也就把这种同步操作称为非阻塞同步(操作和冲突检测具备原子性)。在硬件指令集的发展驱动下,使得 "操作和冲突检测" 这种看起来需要多次操作的行为只需要一条处理器指令便可以完成,这些指令中就包括非常著名的CAS指令(Compare-And-Swap比较并交换)---- 具体了解可以参考:《深入理解Java虚拟机第二版.周志明》第十三章中这样描述关于CAS机制。

接下来看看AtomicInteger.incrementAndGet()方法:

  /**
     * Atomically increments by one the current value.
     *
     * @return the updated value
     */
    public final int incrementAndGet() {
        for (;;) {
            int current = get();
            int next = current + 1;
            if (compareAndSet(current, next))
                return next;
        }
    }

incrementAndGet()方法在一个无限循环体内,不断尝试将一个比当前值大1的新值赋给自己,如果失败则说明在执行"获取-设置"操作的时已经被其它线程修改过了,于是便再次进入循环下一次操作,直到成功为止。这个便是AtomicInteger原子性的"诀窍"了,继续进源码看它的compareAndSet方法:

    /**
     * Atomically sets the value to the given updated value
     * if the current value {@code ==} the expected value.
     *
     * @param expect the expected value
     * @param update the new value
     * @return true if successful. False return indicates that
     * the actual value was not equal to the expected value.
     */
    public final boolean compareAndSet(int expect, int update) {
        return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
    }

可以看到,compareAndSet()调用的就是Unsafe.compareAndSwapInt()方法,即Unsafe类的CAS操作。

因此AtomicInteger做到了线程同步。

你可能感兴趣的:(原子操作类AtomicInteger详解)