- LeetCode:53.最大子序和
xiaoshiguang3
代码随想录-跟着Carl学算法leetcode算法java动态规划
跟着carl学算法,本系列博客仅做个人记录,建议大家都去看carl本人的博客,写的真的很好的!代码随想录LeetCode:53.最大子序和给你一个整数数组nums,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。子数组是数组中的一个连续部分。示例1:输入:nums=[-2,1,-3,4,-1,2,1,-5,4]输出:6解释:连续子数组[4,-1,2,1]的和最大,为6。
- 智能优化算法应用:天鹰算法优化脉冲耦合神经网络的图像自动分割
智能算法研学社(Jack旭)
智能优化算法应用图像分割算法神经网络人工智能
智能优化算法应用:天鹰算法优化脉冲耦合神经网络的图像自动分割文章目录智能优化算法应用:天鹰算法优化脉冲耦合神经网络的图像自动分割1.天鹰算法2.PCNN网络3.实验结果4.参考文献5.Matlab代码摘要:本文利用天鹰算法对脉冲耦合神经网络的参数进行优化,以信息熵作为适应度函数,提高其图像分割的性能。1.天鹰算法天鹰算法原理请参考:https://blog.csdn.net/u011835903/
- ️ 在 Windows WSL 上部署 Ollama 和大语言模型的完整指南20241206
Narutolxy
技术干货分享智浪初航windows语言模型人工智能
️在WindowsWSL上部署Ollama和大语言模型的完整指南引言随着大语言模型(LLM)和人工智能的飞速发展,越来越多的开发者尝试在本地环境中部署大模型进行实验。然而,由于资源需求高、网络限制多以及工具复杂性,部署过程常常充满挑战。本指南基于实际经验,详细讲解如何在WindowsWSL(WindowsSubsystemforLinux)上部署Ollama和大语言模型,同时解决端口转发等常见痛点
- 无需标定板!Galibr:无需目标的LiDAR相机外参标定新方法
计算机视觉工坊
3D视觉从入门到精通数码相机自动驾驶
编辑:3DCV添加小助理:dddvision,备注:方向+学校/公司+昵称,拉你入群。文末附行业细分群扫描下方二维码,加入3D视觉知识星球,星球内凝聚了众多3D视觉实战问题,以及各个模块的学习资料:近20门视频课程(星球成员免费学习)、最新顶会论文、3D视觉最新模组、3DGS系列(视频+文档)、计算机视觉书籍、优质3D视觉算法源码等。想要入门3D视觉、做项目、搞科研,欢迎扫码加入!写在前面这篇文章
- Apache Iceberg数据湖技术在海量实时数据处理、实时特征工程和模型训练的应用技术方案和具体实施步骤及代码
weixin_30777913
音视频语言模型大数据人工智能
ApacheIceberg在处理海量实时数据、支持实时特征工程和模型训练方面的强大能力。Iceberg支持实时特征工程和模型训练,特别适用于需要处理海量实时数据的机器学习工作流。Iceberg作为数据湖,以支持其机器学习平台中的特征存储。Iceberg的分层结构、快照机制、并发读写能力以及模式演进等特性,使得它能够高效地处理海量数据,并且保证数据的一致性和可用性。特别是在特征工程和模型训练方面,I
- 带你从入门到精通——Python(十一. 闭包、装饰器和深浅拷贝)
梦想是成为算法高手
Pythonpython开发语言
建议先阅读我Python专栏中的前置博客,掌握一定的Python前置知识后再阅读本文,链接如下:Python_梦想是成为算法高手的博客-CSDN博客目录十一.闭包、装饰器和深浅拷贝11.1闭包11.1.1作用域11.1.2闭包概述11.1.3global关键字和nonlocal关键字11.2装饰器11.2.1装饰器概述11.2.2装饰器的使用方法11.2.3带参数的语法糖装饰器11.3深浅拷贝11
- 线性回归的简单实现
SkaWxp
深度学习深度学习机器学习mxnetgluon
本文是《动手学深度学习》的笔记文章目录线性回归的简单实现生成随机数据集读取数据初始化模型参数定义模型定义损失函数定义优化算法训练模型线性回归的简洁实现生成数据集读取数据定义模型初始化模型参数定义损失函数定义优化算法训练模型线性回归的简单实现用了mxnet中的自动求导和数组结构frommxnetimportautograd,ndimportrandom生成随机数据集只有这个是用了自己造的数据,因为线
- 投票法:简单而强大的分类利器
ningaiiii
机器学习与深度学习分类机器学习人工智能
投票法:简单而强大的分类利器在机器学习的分类任务中,我们常常需要寻找高效且准确的方法来对数据进行分类。今天,让我们一起来探讨一种简单却极为强大的分类方法——投票法。一、投票法原理(一)通俗易懂的理解投票法就像一场班级选举。假设有一个班级要选出最受欢迎的水果,每个同学心中都有自己的选择(这就好比一个个分类器给出的分类结果)。最后统计每个水果获得的票数,得票最多的水果就当选(对应分类任务中,票数最多的
- 初入机器学习
辰尘_星启
机器学习人工智能深度学习pythonmxnet
写在前面本专栏专门撰写深度学习相关的内容,防止自己遗忘,也为大家提供一些个人的思考一切仅供参考概念辨析深度学习:本质是建模,将训练得到的模型作为系统的一部分使用侧重于发现样本集中隐含的规律难点是认识并了解模型,合理设置初始模型,要对建模对象有比较深刻的认识依赖大量的准确训练样本强化学习:本质是系统,直接将训练得到的模型视作系统本身(激进的像“端到端”)侧重于最大化当前环境下的奖励,最终目标是寻找环
- AtCoder备赛刷题 ABC 383 | 9 Divisors
热爱编程的通信人
算法
学习C++从娃娃抓起!记录下AtCoder(日本算法竞技网站)备赛学习过程中的题目,记录每一个瞬间。附上汇总贴:AtCoder备赛刷题|汇总【题目描述】FindthenumberofpositiveintegersnotgreaterthanNNNthathaveexactly999positivedivisors.找到不大于NNN且恰好有999个因数的正整数的数量。【输入】Theinputisg
- 蓝桥杯python基础算法(2-2)——基础算法(C)——递归
X _X
PythonLanqiao算法
四、递归递归出口:这是递归过程中的终止条件,防止函数无限制地调用自身。当前问题如何变成子问题:这是递归函数中最重要的部分,即如何将当前问题逐步简化为更小的子问题。例题-汉诺塔Hanoi塔由n个大小不同的圆盘和三根木柱a,b,c组成。开始时,这n个圆盘由大到小依次套在a柱上,如图所示。要求把a柱上n个圆盘按下述规则移到c柱上:(1)一次只能移一个圆盘;(2)圆盘只能在三个柱上存放;(3)在移动过程中
- 算法随笔_35: 每日温度
程序趣谈
算法python数据结构
上一篇:算法随笔_34:最后一个单词的长度-CSDN博客=====题目描述如下:给定一个整数数组temperatures,表示每天的温度,返回一个数组answer,其中answer[i]是指对于第i天,下一个更高温度出现在几天后。如果气温在这之后都不会升高,请在该位置用0来代替。示例1:输入:temperatures=[73,74,75,71,69,72,76,73]输出: [1,1,4,2,1,
- 算法随笔_36: 复写零
程序趣谈
算法python数据结构
上一篇:算法随笔_35:每日温度-CSDN博客=====题目描述如下:给你一个长度固定的整数数组arr,请你将该数组中出现的每个零都复写一遍,并将其余的元素向右平移。注意:请不要在超过该数组长度的位置写入元素。请对输入的数组就地进行上述修改,不要从函数返回任何东西。示例1:输入:arr=[1,0,2,3,0,4,5,0]输出:[1,0,0,2,3,0,0,4]解释:调用函数后,输入的数组将被修改为
- 算法随笔_30: 去除重复字母
程序趣谈
算法python数据结构
上一篇:算法随笔_29:最大宽度坡_方法3-CSDN博客=====题目描述如下:给你一个字符串s,请你去除字符串中重复的字母,使得每个字母只出现一次。需保证返回结果的字典序最小(要求不能打乱其他字符的相对位置)。示例1:输入:s="bcabc"输出"abc"=====算法思路:首先我们考虑第一个条件:如何去掉字符串中重复的字母?这个比较简单。我们可以新开辟一个同样长度的新数组s_new来存储最后的
- MATLAB 实现基于MPA(海洋捕食者算法)进行时间序列预测模型的项目详细实例
nantangyuxi
MATLABmatlab算法人工智能回归cnn支持向量机大数据
目录MTFSTLTFSB实她基她MPTFS(海洋捕食者算法)进行时间序列预测模型她项目详细实例...1项目背景介绍...1项目目标她意义...1项目挑战...2项目特点她创新...3项目应用领域...3项目效果预测图程序设计...4项目模型架构...5项目模型描述及代码示例...5项目模型算法流程图...6项目目录结构设计及各模块功能说明...7项目部署她应用...9项目扩展...11项目应该注意
- 基于禁忌搜索算法的TSP问题最优路径搜索matlab仿真
软件算法开发
MATLAB程序开发#路线规划matlab禁忌搜索算法TSP最优路径搜索
目录1.程序功能描述2.测试软件版本以及运行结果展示3.核心程序4.本算法原理5.完整程序1.程序功能描述基于禁忌搜索算法的TSP问题最优路径搜索,旅行商问题(TSP)是一个经典的组合优化问题。其起源可以追溯到19世纪初,最初是在物流配送、线路规划等实际场景中被提出。简单来说,给定一组城市和城市之间的距离,旅行商需要从一个城市出发,访问每个城市恰好一次,最后回到起始城市,目标是找到总路程最短的路线
- PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(NeuralODEs)是深度学习领域的创新性模型架构,它将神经网络的离散变换扩展为连续时间动力系统。与传统神经网络将层表示为离散变换不同,NeuralODEs将变换过程视为深度(或时间)的连续函数。这种方法为机器学习开创了新的研究方向,尤其在生成模型、时间序列分析和物理信息学习等领域具有重要应用。本文将基于Torchdyn(一个专门用于连续深度学习和平衡模型的PyTorch扩展库)
- ULTIMATE VOCAL REMOVER V5 for Mac v5.6 - UVR5终极人声去除器
qw人太好
macosuv
ULTIMATEVOCALREMOVERV5是一款功能强大的音频处理软件,旨在帮助用户去除音频文件中的人声部分,使其更适合用作背景音乐或进行混音处理。该软件使用了先进的音频处理算法,能够准确地识别和去除音频文件中的人声,从而获得纯净的背景音乐。无论是歌曲还是其他音频文件,ULTIMATEVOCALREMOVERV5都可以轻松去除其中的人声部分,让用户更好地享受纯音乐的乐趣。前往Mac荔枝下载ULT
- 基于CNN(一维卷积Conv1D)+LSTM+Attention 实现股票多变量时间序列预测(PyTorch版)
矩阵猫咪
cnnlstmpytorch注意力机制卷积神经网络长短期记忆网络Attention
前言系列专栏:【深度学习:算法项目实战】✨︎涉及医疗健康、财经金融、商业零售、食品饮料、运动健身、交通运输、环境科学、社交媒体以及文本和图像处理等诸多领域,讨论了各种复杂的深度神经网络思想,如卷积神经网络、循环神经网络、生成对抗网络、门控循环单元、长短期记忆、自然语言处理、深度强化学习、大型语言模型和迁移学习。在深度学习的众多模型中,卷积神经网络(CNN)和长短期记忆网络(LSTM)因其独特的优势
- 周报 | 25.1.27-25.2.2文章汇总
双木的木
深度学习拓展阅读python拓展学习人工智能transformer算法深度学习YOLOchatgptllama
为了更好地整理文章和发表接下来的文章,以后每周都汇总一份周报。周报|25.1.20-25.1.26文章汇总-CSDN博客机器学习AI算法工程|DeepSeekV3两周使用总结-CSDN博客Datawhale|一文详尽之SFT(监督微调,建议收藏)!-CSDN博客arXiv每日学术速递|强强联合:CNN与Transformer融合创新提升模型性能!!-CSDN博客AI生成未来|字节提出VideoWo
- 题解 | #求小球落地5次后所经历的路程和第5次反弹的高度#
2301_78234743
java
无锡国企事业单位信息收集加比较找工作必看!互联网还是军工研究所,该如何选择?十三战腾讯京东校招两年,因言获罪被逼主动离职京东校招两年,因言获罪被逼主动离职携程/前端/秋招提前批/一二HR面面经(已意向书)测试开发工程师招聘58同城测试实习一面写在最后富途产品一面面经蚂蚁暑期实习推荐算法岗面经(已挂)快手推荐算法一面【找暑期实习ing】海信英语口语ai面试题目1(3分钟,单次录制3分钟内):跟读一段
- 【车间调度】基于卷积神经网络的柔性作业车间调度问题的两阶段算法(Matlab代码实现)
宇哥预测优化代码学习
cnn算法matlab
个人主页欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述两阶段算法概述第一阶段:特征提取与表示学习第二阶段:调度策略生成与优化研究挑战与前景2运行结果3参考文献4Matlab代码实现1概述该文提出一种基于卷积神经网络的有效两阶段算法,以求解具有机器故障的柔性作业车间调度问题(FJSP)。建立了以最大完成时间
- Ollama 部署 DeepSeek - r1 教程:Windows 与 Linux 篇
Fgaoxing
windowslinux人工智能
在人工智能技术飞速发展的今天,能够在本地部署并使用先进的模型成为许多技术爱好者和专业人士的追求。DeepSeek-r1以其出色的性能备受关注,借助Ollama工具,我们可以方便地在Windows和Linux系统上完成部署。下面就为大家详细介绍具体步骤。一、准备工作在开始部署之前,需要确保已经安装了Ollama。如果尚未安装,请按照以下对应系统的安装方法进行操作。(一)Windows系统安装Olla
- 贪心算法.
ん贤
贪心算法算法
序幕贪心算法(GreedyAlgorithm)是一种在求解问题时采取逐步构建解决方案的策略,每一步都选择当前状态下局部最优的解,期望通过局部最优解能够得到全局最优解。以上为了严谨性,引用了官方用语。而用大白话总结就是:从局部最优解,推至总体最优解从局部规律,推至总体规律很多时候,道理是苍白无力的。所以…上题目如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为摆动序列。第一个差(如果存在
- Floyd 算法
ん贤
算法
目录一、基础介绍二、核心思想三、核心例题1、引出为何用动态规划:2、算法:3、确定dp数组(dptable)以及下标的含义:4、确定递推公式:5、dp数组如何初始化:一、基础介绍首相简单的说一下,Floyed算法又称Floyd-Warshall算法,是为了纪念罗伯特•弗洛伊德(RobertW.Floyd)。所以不要对这个奇怪的名字感到吃力。Floyd算法是一种在具有正或负边缘权重(但没有负周期)的
- 【车间调度】基于卷积神经网络的柔性作业车间调度问题的两阶段算法(Matlab代码实现)
Ps.729
cnn算法matlab
个人主页欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述两阶段算法概述第一阶段:特征提取与表示学习第二阶段:调度策略生成与优化研究挑战与前景2运行结果3参考文献4Matlab代码实现1概述该文提出一种基于卷积神经网络的有效两阶段算法,以求解具有机器故障的柔性作业车间调度问题(FJSP)。建立了以最大完成时间
- 重磅|粉丝福利|专栏1.8|配电网|分布式能源的选址与定容系列
Ps.729
分布式能源
在苍穹之下飘逸时间的纺织机编织一年的篇章晨曦拂面,鸟语花香迎接黎明的曙光繁星坠落,夜色绵长盛装星空的宁静岁月如歌,时光飞逝2024留下足迹,2025将开启新篇章让我们心怀希望,展开美丽的画卷2025年,愿我们梦想绽放,心灵自由舒展以下全部资源文章末尾下载专栏1.8配电网、分布式能源的选址与定容系列【遗传算法、粒子群、改进遗传算法】基于智能算法的电力系统电网最优规划方案的研究(Matlab代码实现)
- 图论复习第二章
sinat_40210730
期末复习图论
最短路径问题针对最短路网络(带权有向无环图)存在性:如果s到v的途径上包含负费用有向圈,则不存在最短s-v途径,否则存在最短s-v简单路最优性原理(最优子结构特征):若图G不存在非负有向圈,则任意最短子路也是相应点对之间的最短路三角不等式定理:d(v,w)指v到w的最短路径长度,则d(v,w)<=d(v,x)+d(x,w)最短路径算法函数方程(使用最优性原理所给出的关于最优解目标值之间的递归关系)
- 图论——最短路
IGP9
算法图论
图片来自Acwing平台本文主要内容:朴素Dijkstra算法堆优化Dijkstra算法Bellman-Ford算法SPFA算法Floyd算法1朴素Dijkstra算法主要功能:求没有负权边的图的单源最短路时间复杂度:o(n2)基本思路:假设存在一个集合s,集合中的所有节点的最短路距离已经被求解,并且存入到了dist[]中每次挑选集合外dist值最小的节点t加入集合s,用该点更新其他所以节点循环n
- 最小边际采样在分类任务中的应用
ningaiiii
机器学习与深度学习分类数据挖掘人工智能
最小边际采样在分类任务中的应用在机器学习的分类任务里,如何高效利用有限的标注数据,一直是研究的重点。最小边际采样(LeastMarginSampling)作为主动学习策略中的一种,为解决这一问题提供了独特的思路。本文将深入探讨最小边际采样在分类任务中的原理、应用以及优势与挑战。一、最小边际采样的原理最小边际采样的核心概念是基于模型预测概率来衡量样本的不确定性。在一个多分类问题中,模型会对每个样本预
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla