- 蚁群算法及蚂蚁系统的原理(js实现版)
de_fault_
js算法算法javascript图论启发式算法
蚁群算法及蚂蚁系统的原理(js实现版)蚁群算法旅行商问题蚁群系统代码实现蚁群算法蚁群算法是著名的启发式算法,常用于解决最短路径问题蚁群算法的来源蚁群算法来源于对蚂蚁寻找食物行为的观察,蚂蚁个体并不存在太高的智慧,但蚁群整体却可以通过信息素来找到通往食物的最短路径蚁群算法的原理假设从a点到b点存在2条路径,而第一条路径l短,第二条路径m长。刚开始时走l和m是随机的,但是由于l更短,所以重复频率也就更
- [读论文] Towards Machine Learning for Placement and Routing in Chip Design: a Methodological Overview
SP FA
#EDA+AI机器学习人工智能
Abstract在现代芯片设计流程中,放置和布线是两个不可或缺且具有挑战性的NP-hard问题。与使用启发式算法或专家精心设计的算法的传统求解器相比,机器学习凭借其数据驱动的性质显示出了广阔的前景,它可以减少对知识和先验的依赖,并且通过其先进的计算范式具有更大的可扩展性(例如GPU加速的深度网络)。本调查首先介绍了基本的布局(Placement)和布线(Routing),并简要介绍了经典的无学习解
- 基于CTDE MAPPO的无线通信资源分配强化学习实现
pk_xz123456
仿真模型深度学习算法lstm人工智能rnn深度学习开发语言
基于CTDEMAPPO的无线通信资源分配强化学习实现摘要本文提出了一种基于集中训练分散执行(CTDE)框架的多智能体近端策略优化(MAPPO)方法,用于解决无线通信网络中的资源分配问题。我们设计了一个多基站协作环境,其中每个基站作为独立智能体,通过分布式决策实现网络吞吐量最大化。实验结果表明,MAPPO算法在频谱效率和用户公平性方面显著优于传统启发式算法。1.引言1.1研究背景随着5G/6G通信技
- 【Python打卡Day12】启发式算法 @浙大疏锦行
可能是猫猫人
Python打卡训练营内容启发式算法算法
今天学习遗传算法,在以后的论文写作中可以水一节,胆子大的人才可以水一章这些算法仅作为你的了解,不需要开始学习,如果以后需要在论文中用到,在针对性的了解下处理逻辑。下面介绍这几种常见的优化算法遗传算法粒子群优化模拟退火##1.数据处理+划分训练和测试importpandasaspdimportpandasaspd#用于数据处理和分析,可处理表格数据。importnumpyasnp#用于数值计算,提供
- 海马优化算法优化支持向量回归(SVR)模型项目
神经网络15044
仿真模型python算法算法回归数据挖掘
海马优化算法优化支持向量回归(SVR)模型项目一、项目概述本项目将实现海马优化算法(SeahorseOptimizationAlgorithm,SOA)优化支持向量回归(SVR)模型的全过程。海马优化算法是一种新型元启发式算法,模拟海马的智能行为(包括移动、捕食和繁殖),能有效解决复杂优化问题。SVR作为强大的回归模型,其性能高度依赖参数选择(C、ε、γ)。本项目将结合SOA和SVR,在Pytho
- 打卡第十二天
wswlqsss
机器学习
超参数调整专题2三种启发式算法的示例代码:遗传算法、粒子群算法、退火算法学习优化算法的思路(避免浪费无效时间)作业:今天以自由探索的思路为主,尝试检索资料、视频、文档,用尽可能简短但是清晰的语言看是否能说清楚这三种算法每种算法的实现逻辑,帮助更深入的理解。ps:我之前写论文也用过这几种算法,也是纯借鉴对于实际实现逻辑没有了解过。遗传算法基于自然选择和遗传机制的优化算法,孟德尔随机化,模仿生物进化过
- python实现将野燕麦优化算法与OpenCV结合
babyai997
python算法opencv
野燕麦优化算法:一种基于自然启发的元启发式优化方法引言野燕麦优化算法(WildOatOptimization,WOO)是一种新兴的元启发式优化算法,灵感来源于野燕麦种子在自然环境中的传播机制。近年来,随着优化算法在计算机视觉、机器学习等领域的广泛应用,基于自然现象的元启发式算法受到越来越多研究者的关注。本文将详细介绍野燕麦优化算法的基本原理、实现方法,并探讨如何将其与OpenCV在Python环境
- 基于启发式算法的化工稳态流程模拟参数优化(hysys-python)
算法小菜鸟成长心得
启发式算法算法化工模拟Aspen
1.背景和意义hsysys是一款在化工领域,能进行稳、动态的流程模拟软件,实现设计、运行的优化。之前的研究,都是手动使用hysys,利用灵敏度进行工艺优化分析,后来,接触到RTO实时优化(仿真模型在线化,实现不同工艺条件下的最佳调控变量),因此,如果变量过多,通过手动改变工艺参数,肯定就不现实了。假设我们基于工厂工艺开发了一套仿真模型,将仿真模型部署到服务器上,该如何实现工艺寻优呢?传统的RTO实
- DAY 12 启发式算法
HINOTOR_
Python训练营python开发语言
目录DAY12启发式算法1.三种启发式算法的示例代码:遗传算法、粒子群算法、退火算法遗传算法粒子群算法退火算法2.学习优化算法的思路(避免浪费无效时间)作业:今天以自由探索的思路为主,尝试检索资料、视频、文档,用尽可能简短但是清晰的语言看是否能说清楚这三种算法每种算法的实现逻辑,帮助更深入的理解。DAY12启发式算法超参数调整专题2#预处理importpandasaspdimportnumpyas
- python学习day12
一叶知秋秋
python学习笔记学习
超参数调整专题2三种启发式算法的示例代码:遗传算法、粒子群算法、退火算法学习优化算法的思路(避免浪费无效时间)三种算法都是优化器,用来求最佳参数的组合,使得指标达到最优,区别在于每一个算法的策略有所区别。下表是总体介绍。遗传算法策略是以适应度为评价指标(可以是一些结果方面的指标),通过选择,交叉和变异三种操作,生成子代,作为新的种群去替换旧的种群(保留适应度高的个体),循环往复,知到适应度收敛或者
- Python5.2打卡(day12)
朝朝辞暮i
python训练营打卡python
超参数调整专题2三种启发式算法的示例代码:遗传算法、粒子群算法、退火算法学习优化算法的思路(避免浪费无效时间)作业:今天以自由探索的思路为主,尝试检索资料、视频、文档,用尽可能简短但是清晰的语言看是否能说清楚这三种算法每种算法的实现逻辑,帮助更深入的理解。以下是对三种启发式算法的核心逻辑解析及代码示例,以“寻找函数最小值”为统一场景(目标函数f(x)=x²),帮助快速理解其差异。一、算法核心逻辑对
- MATLAB算法实战应用案例精讲-【元启发式算法】随机蛙跳跃算法(SFLA)(附matlab代码实现)
林聪木
启发式算法算法
目录前言知识储备多目标优化问题多目标元启发式优化方法算法原理数学模型算法参数更新策略算法思想算法步骤全局搜索过程局部搜索过程算法停止条件算法流程图伪代码优缺点算法拓展一种用于多目标组合优化的三阶段混合蛙跳框架多目标背包问题三阶段多目标混合蛙跳框架基于多目标背包问题的改进策略实验结果与分析基于三阶段多目标混合蛙跳算法的移动群智感知变速多任务调度移动群智感知的变速多任务调度模型求解移动群智感知变速多任
- day12python打卡
qq_58459892
py打开学习python
超参数调整专题2三种启发式算法的示例代码:遗传算法、粒子群算法、退火算法学习优化算法的思路(避免浪费无效时间)作业:今天以自由探索的思路为主,尝试检索资料、视频、文档,用尽可能简短但是清晰的语言看是否能说清楚这三种算法每种算法的实现逻辑,帮助更深入的理解。1.遗传算法(GeneticAlgorithm,GA)核心思想:模拟生物进化中的“自然选择,适者生存”机制,通过迭代优化种群中的个体。关键步骤:
- Day 12 训练
Nina_717
python打卡训练营python
Day12训练1.遗传算法2.粒子群优化(ParticleSwarmOptimization,PSO)3.模拟退火(SimulatedAnnealing,SA)超参数调整专题21.三种启发式算法的示例代码:遗传算法、粒子群算法、退火算法2.学习优化算法的思路(避免浪费无效时间)作业:今天以自由探索的思路为主,尝试检索资料、视频、文档,用尽可能简短但是清晰的语言看是否能说清楚这三种算法每种算法的实现
- 60天Python训练 day12
only_only_you
python开发语言
常见的几种优化算法:遗传算法粒子群优化模拟退火核心思想:这些启发式算法都是优化器。你的目标是找到一组超参数,让你的机器学习模型在某个指标(比如验证集准确率)上表现最好。这个过程就像在一个复杂的地形(参数空间)上寻找最高峰(最佳性能)。启发式算法就是一群聪明的“探险家”,它们用不同的策略(模仿自然、物理现象等)来寻找这个最高峰,而不需要知道地形每一处的精确梯度(导数)。遗传算法灵感来源:生物进化,达
- Python训练营打卡DAY12
我想睡觉261
python开发语言
DAY12未来几天都是五一假期,适当降低内容难度和工作量,祝大家节日快乐!超参数调整专题2三种启发式算法的示例代码:遗传算法、粒子群算法、退火算法学习优化算法的思路(避免浪费无效时间)作业:今天以自由探索的思路为主,尝试检索资料、视频、文档,用尽可能简短但是清晰的语言看是否能说清楚这三种算法每种算法的实现逻辑,帮助更深入的理解。个人理解:这些算法都是网格搜索的优化版本。从最初的遍历硬拆解最优超参数
- 0-学习协同策略解决NP难路由问题(NeurlPS2021)(code)(完)
太极生两鱼
文献阅读学习机器学习人工智能
code:https://github.com/alstn12088/LCP文章目录Abstract1Introduction2RelatedWorks2.1基于DRL的构造性启发式算法2.2基于DRL的改进启发式算法2.3与传统求解器结合的混合方法3FormulationofRoutingProblems4LearningCollaborativePolicies4.1播种过程4.2修正过程5E
- DAY12 超参数调整专题2
m0_57278362
python学习python
三种启发式算法的示例代码:遗传算法、粒子群算法、退火算法模拟退火算法(SimulatedAnnealing)是一种受金属退火过程启发的全局优化算法,通过模拟降温过程中的热力学平衡来避免陷入局部最优。以下是其核心实现逻辑:1.算法核心思想允许以一定概率接受比当前解更差的解,随着温度降低逐渐减少这种概率,从而平衡全局探索(高温阶段)和局部收敛(低温阶段)。2.实现步骤(1)初始化参数初始温度(T):较
- python打卡day12
(・Д・)ノ
Python打卡训练python开发语言
超参数调整专题2三种启发式算法的示例代码:遗传算法、粒子群算法、退火算法学习优化算法的思路(避免浪费无效时间)作业:今天以自由探索的思路为主,尝试检索资料、视频、文档,用尽可能简短但是清晰的语言看是否能说清楚这三种算法每种算法的实现逻辑,帮助更深入的理解。今天介绍下遗传算法,在你以后的论文写作中可以水一节,胆子大的人可以水一章。这些算法仅作为了解,不需要开始学习,如果以后需要在论文中用到,再针对性
- Python训练营打卡Day12
宸汐Fish_Heart
Python打卡训练python开发语言机器学习
超参数调整专题2三种启发式算法的示例代码:遗传算法、粒子群算法、退火算法学习优化算法的思路(避免浪费无效时间)作业:今天以自由探索的思路为主,尝试检索资料、视频、文档,用尽可能简短但是清晰的语言看是否能说清楚这三种算法每种算法的实现逻辑,帮助更深入的理解。一、遗传算法(GeneticAlgorithm,GA)核心逻辑:模仿生物进化中的"优胜劣汰"机制,通过种群迭代进化寻找最优解。类比:假设你有一群
- DRABP_NSGA2最新算法神圣宗教算法优化BP做代理模型,NSGA2反求最优因变量和对应的最佳自变量组合,Matlab代码
Matlab建模攻城师
多目标优化机器学习算法人工智能
一、神圣宗教算法(DRA)优化BP代理模型1.DRA的核心原理DRA是一种模拟宗教社会层级互动的元启发式算法,通过“追随者学习”、“传教士传播”和“领导者引导”三种行为模式优化搜索过程。在BP神经网络优化中,DRA通过以下步骤调整网络权值和阈值:追随者学习:随机选择种群中的个体(BP参数组合)进行局部探索。传教士传播:将优秀个体的参数(高精度模型)扩散至其他个体。领导者引导:保留全局最优解(当前最
- (4-5) 轨迹规划算法和优化:使用粒子群优化(PSO)对无人机路径进行规划和优化
码农三叔
算法人工智能机器学习无人机机路规划运动控制
粒子群优化(ParticleSwarmOptimization,PSO)是一种启发式算法,灵感来源于鸟群或鱼群中个体协同行为。PSO通过模拟群体中个体间的合作与信息共享来搜索问题的解空间,尤其适用于全局优化问题。实现PSO算法的基本步骤如下所示。(1)初始化粒子群:在解空间中随机生成一定数量的粒子,每个粒子表示一个可能的解,具有位置和速度。这些粒子的初始化可以是随机的或基于先验知识的。(2)定义适
- 算法 | 灰狼优化算法原理,公式,应用,算法改进研究综述,matlab完整代码
单北斗SLAMer
智能优化算法算法优化算法matlab
灰狼优化算法(GWO)综述:原理、应用与改进研究摘要灰狼优化算法(GreyWolfOptimizer,GWO)是一种基于灰狼群体捕食行为的元启发式算法,自2014年提出以来,因其结构简单、参数少且收敛性能优异,被广泛应用于工程优化、人工智能和工业控制等领域。本文系统阐述了GWO的生物学原理、数学模型及核心公式,总结了算法在参数自适应、混合策略、混沌初始化等方面的改进研究,并提供了完整的MATLAB
- 量子边缘计算:当Wasm遇见量子退火机——解锁组合优化问题的终极加速方案
Eqwaak00
分布式系统设计实战量子计算python大数据自动化
一、引言:组合优化问题的挑战与机遇在物流调度、金融投资、芯片设计等领域,组合优化问题(CombinatorialOptimization)因其高复杂度和NP-Hard特性,一直是学术界和工业界的核心挑战。例如,一个包含100个城市的旅行商问题(TSP),其可能的路径组合高达1015510155种,即使用超级计算机也需要数年才能穷举所有解。传统启发式算法(如遗传算法、模拟退火)虽能提供近似解,但面对
- 如何将启发式方法作为混合整数规划模型的热启动——以流水车间调度问题为例
Lins号丹
生产调度优化(运筹专项)运筹优化求解器车间调度启发式算法MIP热启动
文章目录1.引言2.流水车间调度问题案例3.基于NEH启发式算法获取可行解4.将启发式可行解转化为变量值进行热启动1.引言在计算科学当中,启发式方法是一种用于找到给定问题可行方案的技术,这类方法的特点是通用性强,且找可行方案的速度快,但是启发式方法不能保证获得最优解。另一类的精确方法,则能在求解时间充裕前提下保证最优解,但是计算成本可能极高。两类方法各有优势,在实际应用当中,需要根据具体的应用场景
- 最新智能优化算法: 贪婪个体优化算法(Greedy Man Optimization Algorithm,GMOA)求解23个经典函数测试集,MATLAB代码
IT猿手
MATLAB智能优化算法算法matlab开发语言人工智能智能优化算法
一、贪婪个体优化算法贪婪个体优化算法(GreedyManOptimizationAlgorithm,GMOA)是HamedNozari与HosseinAbdi于2024年提出的一种新型受生物启发的元启发式算法,它模拟了抵抗变化的竞争个体的行为。GMOA引入了两个独特的机制:MMO抵抗机制,防止过早替换解;周期性寄生虫清除机制,促进多样性并避免停滞。该算法旨在解决传统优化算法中的过早收敛和缺乏多样性
- 群体智能优化算法-爱情进化算法 (Love Evolution Algorithm, LEA,含Matlab源代码)
HR Zhou
算法matlab开发语言群体智能优化优化
摘要爱情进化算法(LEA)是一种基于心理学刺激-价值-角色理论(Stimulus-Value-RoleTheory)所提出的新型元启发式算法。该算法将“恋爱中的人”抽象为种群个体,通过对个体“幸福度(Happiness)”的定义和动态更新,模拟了从“相遇->价值交流->角色平衡”三个阶段不断逼近全局最优解的过程。LEA在高维连续优化与工程应用等场景下可实现对搜索空间的充分探索与精细开发。本文结合算
- ALO蚁狮优化算法:从背景到实战的全面解析
der丸子吱吱吱
智能优化算法ALO算法
目录引言背景2.1蚁狮优化算法的起源2.2自然启发式算法的背景2.3ALO的发展与应用原理3.1蚁狮的生物行为3.2ALO的数学建模3.3算法流程与关键步骤实战应用4.1函数优化问题4.2工程优化案例4.3组合优化与约束优化代码实现与结果分析5.1Python代码实现5.2实验设计与结果分析5.3性能评估与优化建议学习资源6.1工具推荐6.2网站与文献资源6.3ALO与AI结合的方法结论1.引言在
- Marker可以快速且准确地将PDF转换为markdown格式。
星霜笔记
开源关注简介免费源码pdf
MarkerMarker可以快速且准确地将PDF转换为markdown格式。支持多种文档类型(针对书籍和科学论文进行了优化)支持所有语言移除页眉/页脚/其他杂质格式化表格和代码块提取并保存图像以及markdown将大多数方程转换为latex支持在GPU、CPU或MPS上运行工作原理Marker是一个由深度学习模型组成的管道:提取文本,必要时进行OCR处理(启发式算法,surya,tesseract
- 群体智能优化算法-GOOSE优化算法(含Matlab源代码)
HR Zhou
算法matlab开发语言群体智能优化优化
摘要GOOSE(GooseOptimizationAlgorithm)是一种基于大雁(Goose)在自然界中觅食与捕猎行为所启发的元启发式算法。它借助大雁的飞行速度、加速度、随机跳跃等策略,以实现对搜索空间进行全局探索和局部开发。通过设置自由落体速度(FreeFallSpeed)、声音传播距离(SoundDistance)与时间平均(TimeAverage)等多种机制,GOOSE在处理复杂的高维非
- 关于旗正规则引擎下载页面需要弹窗保存到本地目录的问题
何必如此
jsp超链接文件下载窗口
生成下载页面是需要选择“录入提交页面”,生成之后默认的下载页面<a>标签超链接为:<a href="<%=root_stimage%>stimage/image.jsp?filename=<%=strfile234%>&attachname=<%=java.net.URLEncoder.encode(file234filesourc
- 【Spark九十八】Standalone Cluster Mode下的资源调度源代码分析
bit1129
cluster
在分析源代码之前,首先对Standalone Cluster Mode的资源调度有一个基本的认识:
首先,运行一个Application需要Driver进程和一组Executor进程。在Standalone Cluster Mode下,Driver和Executor都是在Master的监护下给Worker发消息创建(Driver进程和Executor进程都需要分配内存和CPU,这就需要Maste
- linux上独立安装部署spark
daizj
linux安装spark1.4部署
下面讲一下linux上安装spark,以 Standalone Mode 安装
1)首先安装JDK
下载JDK:jdk-7u79-linux-x64.tar.gz ,版本是1.7以上都行,解压 tar -zxvf jdk-7u79-linux-x64.tar.gz
然后配置 ~/.bashrc&nb
- Java 字节码之解析一
周凡杨
java字节码javap
一: Java 字节代码的组织形式
类文件 {
OxCAFEBABE ,小版本号,大版本号,常量池大小,常量池数组,访问控制标记,当前类信息,父类信息,实现的接口个数,实现的接口信息数组,域个数,域信息数组,方法个数,方法信息数组,属性个数,属性信息数组
}
&nbs
- java各种小工具代码
g21121
java
1.数组转换成List
import java.util.Arrays;
Arrays.asList(Object[] obj); 2.判断一个String型是否有值
import org.springframework.util.StringUtils;
if (StringUtils.hasText(str)) 3.判断一个List是否有值
import org.spring
- 加快FineReport报表设计的几个心得体会
老A不折腾
finereport
一、从远程服务器大批量取数进行表样设计时,最好按“列顺序”取一个“空的SQL语句”,这样可提高设计速度。否则每次设计时模板均要从远程读取数据,速度相当慢!!
二、找一个富文本编辑软件(如NOTEPAD+)编辑SQL语句,这样会很好地检查语法。有时候带参数较多检查语法复杂时,结合FineReport中生成的日志,再找一个第三方数据库访问软件(如PL/SQL)进行数据检索,可以很快定位语法错误。
- mysql linux启动与停止
墙头上一根草
如何启动/停止/重启MySQL一、启动方式1、使用 service 启动:service mysqld start2、使用 mysqld 脚本启动:/etc/inint.d/mysqld start3、使用 safe_mysqld 启动:safe_mysqld&二、停止1、使用 service 启动:service mysqld stop2、使用 mysqld 脚本启动:/etc/inin
- Spring中事务管理浅谈
aijuans
spring事务管理
Spring中事务管理浅谈
By Tony Jiang@2012-1-20 Spring中对事务的声明式管理
拿一个XML举例
[html]
view plain
copy
print
?
<?xml version="1.0" encoding="UTF-8"?>&nb
- php中隐形字符65279(utf-8的BOM头)问题
alxw4616
php中隐形字符65279(utf-8的BOM头)问题
今天遇到一个问题. php输出JSON 前端在解析时发生问题:parsererror.
调试:
1.仔细对比字符串发现字符串拼写正确.怀疑是 非打印字符的问题.
2.逐一将字符串还原为unicode编码. 发现在字符串头的位置出现了一个 65279的非打印字符.
 
- 调用对象是否需要传递对象(初学者一定要注意这个问题)
百合不是茶
对象的传递与调用技巧
类和对象的简单的复习,在做项目的过程中有时候不知道怎样来调用类创建的对象,简单的几个类可以看清楚,一般在项目中创建十几个类往往就不知道怎么来看
为了以后能够看清楚,现在来回顾一下类和对象的创建,对象的调用和传递(前面写过一篇)
类和对象的基础概念:
JAVA中万事万物都是类 类有字段(属性),方法,嵌套类和嵌套接
- JDK1.5 AtomicLong实例
bijian1013
javathreadjava多线程AtomicLong
JDK1.5 AtomicLong实例
类 AtomicLong
可以用原子方式更新的 long 值。有关原子变量属性的描述,请参阅 java.util.concurrent.atomic 包规范。AtomicLong 可用在应用程序中(如以原子方式增加的序列号),并且不能用于替换 Long。但是,此类确实扩展了 Number,允许那些处理基于数字类的工具和实用工具进行统一访问。
 
- 自定义的RPC的Java实现
bijian1013
javarpc
网上看到纯java实现的RPC,很不错。
RPC的全名Remote Process Call,即远程过程调用。使用RPC,可以像使用本地的程序一样使用远程服务器上的程序。下面是一个简单的RPC 调用实例,从中可以看到RPC如何
- 【RPC框架Hessian一】Hessian RPC Hello World
bit1129
Hello world
什么是Hessian
The Hessian binary web service protocol makes web services usable without requiring a large framework, and without learning yet another alphabet soup of protocols. Because it is a binary p
- 【Spark九十五】Spark Shell操作Spark SQL
bit1129
shell
在Spark Shell上,通过创建HiveContext可以直接进行Hive操作
1. 操作Hive中已存在的表
[hadoop@hadoop bin]$ ./spark-shell
Spark assembly has been built with Hive, including Datanucleus jars on classpath
Welcom
- F5 往header加入客户端的ip
ronin47
when HTTP_RESPONSE {if {[HTTP::is_redirect]}{ HTTP::header replace Location [string map {:port/ /} [HTTP::header value Location]]HTTP::header replace Lo
- java-61-在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差. 求所有数对之差的最大值。例如在数组{2, 4, 1, 16, 7, 5,
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/2541117420116135376632/
写了个java版的
public class GreatestLeftRightDiff {
/**
* Q61.在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差。
* 求所有数对之差的最大值。例如在数组
- mongoDB 索引
开窍的石头
mongoDB索引
在这一节中我们讲讲在mongo中如何创建索引
得到当前查询的索引信息
db.user.find(_id:12).explain();
cursor: basicCoursor 指的是没有索引
&
- [硬件和系统]迎峰度夏
comsci
系统
从这几天的气温来看,今年夏天的高温天气可能会维持在一个比较长的时间内
所以,从现在开始准备渡过炎热的夏天。。。。
每间房屋要有一个落地电风扇,一个空调(空调的功率和房间的面积有密切的关系)
坐的,躺的地方要有凉垫,床上要有凉席
电脑的机箱
- 基于ThinkPHP开发的公司官网
cuiyadll
行业系统
后端基于ThinkPHP,前端基于jQuery和BootstrapCo.MZ 企业系统
轻量级企业网站管理系统
运行环境:PHP5.3+, MySQL5.0
系统预览
系统下载:http://www.tecmz.com
预览地址:http://co.tecmz.com
各种设备自适应
响应式的网站设计能够对用户产生友好度,并且对于
- Transaction and redelivery in JMS (JMS的事务和失败消息重发机制)
darrenzhu
jms事务承认MQacknowledge
JMS Message Delivery Reliability and Acknowledgement Patterns
http://wso2.com/library/articles/2013/01/jms-message-delivery-reliability-acknowledgement-patterns/
Transaction and redelivery in
- Centos添加硬盘完全教程
dcj3sjt126com
linuxcentoshardware
Linux的硬盘识别:
sda 表示第1块SCSI硬盘
hda 表示第1块IDE硬盘
scd0 表示第1个USB光驱
一般使用“fdisk -l”命
- yii2 restful web服务路由
dcj3sjt126com
PHPyii2
路由
随着资源和控制器类准备,您可以使用URL如 http://localhost/index.php?r=user/create访问资源,类似于你可以用正常的Web应用程序做法。
在实践中,你通常要用美观的URL并采取有优势的HTTP动词。 例如,请求POST /users意味着访问user/create动作。 这可以很容易地通过配置urlManager应用程序组件来完成 如下所示
- MongoDB查询(4)——游标和分页[八]
eksliang
mongodbMongoDB游标MongoDB深分页
转载请出自出处:http://eksliang.iteye.com/blog/2177567 一、游标
数据库使用游标返回find的执行结果。客户端对游标的实现通常能够对最终结果进行有效控制,从shell中定义一个游标非常简单,就是将查询结果分配给一个变量(用var声明的变量就是局部变量),便创建了一个游标,如下所示:
> var
- Activity的四种启动模式和onNewIntent()
gundumw100
android
Android中Activity启动模式详解
在Android中每个界面都是一个Activity,切换界面操作其实是多个不同Activity之间的实例化操作。在Android中Activity的启动模式决定了Activity的启动运行方式。
Android总Activity的启动模式分为四种:
Activity启动模式设置:
<acti
- 攻城狮送女友的CSS3生日蛋糕
ini
htmlWebhtml5csscss3
在线预览:http://keleyi.com/keleyi/phtml/html5/29.htm
代码如下:
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>攻城狮送女友的CSS3生日蛋糕-柯乐义<
- 读源码学Servlet(1)GenericServlet 源码分析
jzinfo
tomcatWebservlet网络应用网络协议
Servlet API的核心就是javax.servlet.Servlet接口,所有的Servlet 类(抽象的或者自己写的)都必须实现这个接口。在Servlet接口中定义了5个方法,其中有3个方法是由Servlet 容器在Servlet的生命周期的不同阶段来调用的特定方法。
先看javax.servlet.servlet接口源码:
package
- JAVA进阶:VO(DTO)与PO(DAO)之间的转换
snoopy7713
javaVOHibernatepo
PO即 Persistence Object VO即 Value Object
VO和PO的主要区别在于: VO是独立的Java Object。 PO是由Hibernate纳入其实体容器(Entity Map)的对象,它代表了与数据库中某条记录对应的Hibernate实体,PO的变化在事务提交时将反应到实际数据库中。
实际上,这个VO被用作Data Transfer
- mongodb group by date 聚合查询日期 统计每天数据(信息量)
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 1 */
{
"_id" : ObjectId("557ac1e2153c43c320393d9d"),
"msgType" : "text",
"sendTime" : ISODate("2015-06-12T11:26:26.000Z")
- java之18天 常用的类(一)
Luob.
MathDateSystemRuntimeRundom
System类
import java.util.Properties;
/**
* System:
* out:标准输出,默认是控制台
* in:标准输入,默认是键盘
*
* 描述系统的一些信息
* 获取系统的属性信息:Properties getProperties();
*
*
*
*/
public class Sy
- maven
wuai
maven
1、安装maven:解压缩、添加M2_HOME、添加环境变量path
2、创建maven_home文件夹,创建项目mvn_ch01,在其下面建立src、pom.xml,在src下面简历main、test、main下面建立java文件夹
3、编写类,在java文件夹下面依照类的包逐层创建文件夹,将此类放入最后一级文件夹
4、进入mvn_ch01
4.1、mvn compile ,执行后会在