✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,
代码获取、论文复现及科研仿真合作可私信。
个人主页:Matlab科研工作室
个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击
智能优化算法 神经网络预测 雷达通信 无线传感器 电力系统
信号处理 图像处理 路径规划 元胞自动机 无人机
BP神经网络是一种常用的前馈神经网络,具有强大的非线性映射能力,广泛应用于模式识别、数据预测等领域。然而,BP神经网络存在易陷入局部极小值、收敛速度慢等问题,限制了其在某些任务中的应用。
差分进化算法(DE)是一种有效的优化算法,具有较强的全局搜索能力和鲁棒性。将DE算法与BP神经网络结合,可以有效地改善BP神经网络的性能,提高预测精度。
DE-BP算法的基本思想是,利用DE算法优化BP神经网络的权重和阈值,使BP神经网络能够更好地拟合训练数据,从而提高预测精度。DE-BP算法的具体步骤如下:
初始化BP神经网络的权重和阈值。
将BP神经网络划分为多个子网络,每个子网络包含一个隐含层和一个输出层。
对每个子网络,应用DE算法进行优化。
将所有子网络的权重和阈值组合起来,得到最终的BP神经网络模型。
使用最终的BP神经网络模型对测试数据进行预测。
DE-BP算法具有以下优点:
较强的全局搜索能力,可以有效地避免陷入局部极小值。
收敛速度快,可以快速地找到最优解。
鲁棒性强,对噪声和异常值不敏感。
易于实现,可以方便地应用于各种数据预测任务。
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
t_train = ind2vec(T_train);
t_test = ind2vec(T_test );
DE-BP算法已成功应用于各种数据预测任务,包括:
时间序列预测:DE-BP算法可以用于预测股票价格、汇率、气温等时间序列数据。
分类预测:DE-BP算法可以用于预测疾病、信用风险、客户流失等分类数据。
回归预测:DE-BP算法可以用于预测房屋价格、销售额、利润等回归数据。
DE-BP算法是一种有效的BP神经网络优化算法,具有较强的全局搜索能力、收敛速度快、鲁棒性强等优点。DE-BP算法已成功应用于各种数据预测任务,取得了良好的效果。
[1] 徐松金,龙文.差分进化优化参数的LSSVM中长期径流预测[J].科学技术与工程, 2012, 012(027):6955-6959.
[2] 刘俊.基于DE与BP神经网络的城市供水系统节能优化调度研究[D].天津理工大学[2024-01-14].
[3] 卢顺,李英顺.基于差分进化算法优化BP神经网络的镍镉电池寿命预测[J].广西工学院学报, 2020, 031(002):93-98.