- php yii 微信支付宝,Yii使用easywechat实现微信支付
爱吃生菜的鱼
phpyii微信支付宝
您现在的位置是:网站首页>>微信>>微信公众号Yii使用easywechat实现微信支付发布时间:2019-04-3011:43:07作者:wangjian浏览量:1142点赞量:0一:微信公众号申请微信支付申请微信公众号的微信支付申请这里就不进行叙述了二:yii配置支付配置这里我使用的是max-wen/yii2-easy-wechat,所以这里我参考的是3.X版本的文档2:微信支付配置'WECH
- 鸿蒙应用实战接入微信支付API
James吖
harmonyos微信华为
引言随着鸿蒙系统的普及和发展,越来越多的应用选择在其平台上部署。为了提升用户体验,开发者常常需要集成支付功能。微信支付作为国内主流的支付方式之一,其便捷性和安全性受到了广大用户的青睐。本文将详细介绍如何在鸿蒙应用中实现微信支付功能,帮助开发者快速上手。前提条件在开始之前,请确保你已经具备以下条件:已经创建了鸿蒙应用。在微信支付平台上注册并创建了商户账户,获取到了AppID、MCH_ID和API密钥
- thinkphp5使用easywechat集成微信扫码支付
骑猪行钢线
后端语言
微信扫码支付用起来还是很方便的,如果使用微信支付官方的sdk开发也是可以的,不过还是选择了easywechat,主要还是因为easywechat集成了各种功能,基本上和微信相关的接口都做了比较不错的封装,因为要同时使用很多功能,索性微信扫码支付也一并用easywechat做了,而且不得不说使用方法是十分的简单,不多说了直接上步骤:1,使用composer在thinkphp5项目的根目录安装easy
- 使用PyTorch实现线性SVM指南
余桢钟
使用PyTorch实现线性SVM指南svm-pytorchLinearSVMwithPyTorch项目地址:https://gitcode.com/gh_mirrors/sv/svm-pytorch本指南基于GitHub上的开源项目svm-pytorch,旨在帮助开发者理解和运用这个库来在PyTorch框架下实现支持向量机(SupportVectorMachines,SVM)。项目介绍sparse
- AI常见的算法
纠结哥_Shrek
人工智能算法
人工智能(AI)中常见的算法分为多个领域,如机器学习、深度学习、强化学习、自然语言处理和计算机视觉等。以下是一些常见的算法及其用途:1.机器学习(MachineLearning)监督学习(SupervisedLearning)线性回归(LinearRegression):用于预测连续值,如房价预测。逻辑回归(LogisticRegression):用于分类问题,如垃圾邮件检测。支持向量机(SVM)
- 【无标题】
星辰大海936
数学建模算法
支持向量机分析1.硬间隔支持向量机硬间隔支持向量机的目标是找到一个超平面,使得所有数据点都位于间隔边界之外,并且间隔最大化。其优化问题可以表示为:minw12∥w∥2s.t.yi(wTxi+b)≥1,∀i\begin{array}{c}\min_w\frac{1}{2}\|w\|^2\\\text{s.t.}\quady_i(w^Tx_i+b)\ge1,\quad\foralli\end{arr
- 支持向量机图像分类matlab,基于支持向量机的图像分类.MATLAB
流光微言
支持向量机图像分类matlab
【实例简介】基于支持向量机的图像分类.MATLAB【实例截图】【核心代码】基于支持向量机的图像分类├──code.zip├──pictures│├──car││├──car10.jpg││├──car11.jpg││├──car12.jpg││├──car13.jpg││├──car14.jpg││├──car15.jpg││├──car16.jpg││├──car17.jpg││├──car18
- Python支持向量机(SVM)算法:面向对象的实现与案例详解
闲人编程
进阶算法案例支持向量机算法python深度学习数据分析
目录Python支持向量机(SVM)算法:面向对象的实现与案例详解引言一、支持向量机算法概述1.1支持向量机的基本思想1.2SVM的分类问题1.3SVM的优化目标二、面向对象的SVM实现2.1类的设计2.2Python代码实现2.3代码详解三、案例分析3.1案例一:鸢尾花分类问题描述数据准备模型训练与预测输出结果3.2案例二:手写数字识别问题描述数据准备模型训练与预测输出结果四、SVM的优化与核方
- Python | 基于支持向量机(SVM)的图像分类案例
python收藏家
python机器学习python机器学习
支持向量机(SVM)是一种监督机器学习算法,可用于分类和回归任务。在本文中,我们将重点关注使用SVM进行图像分类。当计算机处理图像时,它将其视为二维像素阵列。数组的大小对应于图像的分辨率,例如,如果图像是200像素宽和200像素高,则数组的尺寸为200x200x3。前两个维度分别表示图像的宽度和高度,而第三个维度表示RGB颜色通道。数组中的值范围为0到255,表示每个点处像素的强度。为了使用SVM
- 情感分析常见算法与模型及实现步骤
计算机软件程序设计
知识科普算法情感分析机器学习
【1】常见算法与模型情感分析(SentimentAnalysis)是一种自然语言处理(NLP)技术,用于识别和提取文本中的主观信息,如情绪、态度和意见。常见的算法和模型包括以下几种:传统机器学习方法朴素贝叶斯(NaiveBayes)基于贝叶斯定理,假设特征之间相互独立。计算简单,适用于大规模数据集。常用于文本分类任务。支持向量机(SVM)通过寻找最优超平面来划分不同的类别。在高维空间中表现良好,适
- C# 解决“因为算法不同,客户端和服务器无法通信”的问题
初九之潜龙勿用
c#服务器开发语言网络协议网络安全
目录故障现象开发运行环境解决实现携带证书的APIURL调用其它故障现象实现微信退款功能,我们需要在微信支付商户后台申请安全证书,并调用退款APIURL。在调试过程中为增添返回调试信息属性,重新对.netFrameWorkd类库进行编译并部署,调试一切正常,但再次覆盖的时候,调用显示为“因为算法不同,客户端和服务器无法通信。”,系统返回错误:类似调用如下代码:stringcert=@"D:\wxpa
- MATLAB 代码的主要功能是基于功能连接(FC)数据,利用支持向量机(SVM)进行分类,并通过留一法交叉验证、特征选择、超参数寻优、一致性特征分析以及置换检验等步骤,评估分类性能和特征的显著性
max500600
MATLAB开发语言算法matlab支持向量机分类
clear;clcNumROI=37;%ROI数目NumCon=605;%连接数目%选择病人组数据文件夹%path1=spm_select(1,'dir','pleaseselectpatientsdir');path1='D:\siying\42ML_day3\nnnnnn\FC\Patient';%和第7行用一个即可,为手动改路径file1=dir([path1,filesep,'*.txt'
- SVC函数介绍
浊酒南街
#机器学习算法人工智能
目录前言函数介绍示例前言SVC(SupportVectorClassification)是支持向量机(SVM)的一种实现,主要用于分类问题。支持向量机是一种监督学习算法,其基本原理是找到一个最优的超平面来将不同类别的数据分开。SVC在小样本和高维空间中表现良好,且能够处理非线性分类问题。函数介绍SVC(C=1.0,kernel=‘rbf’,degree=3,gamma=‘auto’,coef0=0
- 苍穹外卖07——来单提醒和客户催单(涉及SpringTask、WebSocket协议、苍穹外卖跳过微信支付同时保证可以收到订单功能)
6JSh5Z2k5Y+35ouJ
苍穹外卖前端linux数据库
SpringTask介绍应用场景:信用卡每月还款提醒银行贷款每月还款提醒火车票销售系统处理未付款订单入职纪念日为用户发送通知cron表达式cron表达式其实就是一个字符串,通过cron表达式可以定义任务触发的时间。构成规则:分为6或7个域,由空格分隔,每个域代表一个含义。每个域的含义分别为:秒、分钟、小时、日、月、周、年(可选)。秒分钟小时日月周年2022年10月12日上午9点整对应的cron表达
- 【水果识别】SVM水果成熟检测系统(含苹果 香蕉 橙子)【含GUI Matlab源码 11052期】含报告
Matlab武动乾坤
Matlab图像处理(进阶版)matlab
Matlab武动乾坤博客之家博主简介:985研究生,Matlab领域科研开发者;座右铭:行百里者,半于九十。代码获取方式:CSDNMatlab武动乾坤—代码获取方式更多Matlab图像处理仿真内容点击①Matlab图像处理(进阶版)⛳️关注CSDNMatlab武动乾坤,更多资源等你来!!⛄一、SVM水果成熟检测系统SVM(支持向量机)水果成熟检测系统的原理和流程如下:原理:1SVM是一种监督学习算
- 【人工智能 | 大数据】基于人工智能的大数据分析方法
用心去追梦
人工智能大数据数据分析
基于人工智能(AI)的大数据分析方法是指利用机器学习、深度学习和其他AI技术来分析和处理大规模数据集。这些方法能够自动识别模式、提取有用信息,并做出预测或决策,从而帮助企业和组织更好地理解市场趋势、客户行为以及其他关键因素。以下是几种主要的基于AI的大数据分析方法:机器学习模型:通过训练算法让计算机从历史数据中学习并做出预测或分类。常见的机器学习技术包括监督学习(如回归分析、支持向量机)、非监督学
- matlab代码实现了一个基于 SVM(支持向量机)的图像分割系统
go5463158465
MATLAB专栏算法深度学习matlab支持向量机开发语言
clear;clc;main();%1.数据加载和预处理function[features,labels]=prepareData(imageFolder)%获取所有图像和JSON文件imgFiles
- ChatGPT4.0最新功能和使用技巧,助力日常生活、学习与工作!
WangYan2022
教程人工智能chatgpt数据分析ai绘画AI写作
熟练掌握ChatGPT4.0在数据分析、自动生成代码等方面的强大功能,系统学习人工智能(包括传统机器学习、深度学习等)的基础理论知识,以及具体的代码实现方法,同时掌握ChatGPT4.0在科研工作中的各种使用方法与技巧,以及人工智能领域经典机器学习算法(BP神经网络、支持向量机、决策树、随机森林、变量降维与特征选择、群优化算法等)和热门深度学习方法(卷积神经网络、迁移学习、RNN与LSTM神经网络
- uniapp 微信小程序支付流程
AAA正在输入中
uni-app微信小程序小程序
uniapp小程序支付流程主要包括以下几个步骤:申请微信支付:在开始开发前,首先需要在微信支付平台完成注册和申请审核。申请成功后,将获得微信支付所必须的各种证书、密钥等信息,这些信息将用于后续的支付请求1。安装支付插件:在uniapp中,需要使用相应的支付插件来实现微信支付功能。比如可以使用uni-pay插件1。获取登录凭证(code):在小程序端,调用wx.login()接口获取用户的登录凭证(
- uniapp 微信小程序 点击按钮调用微信支付
公孙元二
微信支付微信小程序uniapp
实现效果:点击按钮后唤起支付方式选择:在这里我选择“微信支付”输完成密码后完成支付:需求:计算金额和创建支付订单等操作都在后端完成,前端只要将后端传过来的签名、时间戳、随机字符串等参数传给微信的api,即可在小程序唤起支付弹窗。代码://调用微信支付callPayMent(data){wx.requestPayment({//调起支付'timeStamp':data.timeStamp,'nonc
- Python AI教程之二十一:监督学习之支持向量机(SVM)算法
潜洋
人工智能Python中级支持向量机算法机器学习python
支持向量机(SVM)算法支持向量机(SVM)是一种功能强大的机器学习算法,广泛用于线性和非线性分类以及回归和异常值检测任务。SVM具有很强的适应性,适用于各种应用,例如文本分类、图像分类、垃圾邮件检测、笔迹识别、基因表达分析、人脸检测和异常检测。SVM特别有效,因为它们专注于寻找目标特征中不同类别之间的最大分离超平面,从而使其对二分类和多分类都具有鲁棒性。在本大纲中,我们将探讨支持向量机(SVM)
- 通过付款码来区分是属于支付宝、微信
笑醉踏歌行
微信
微信支付码规则:18位纯数字,以10、11、12、13、14、15开头支付宝支付码规则:25-30开头的长度为16~24位的数字,实际字符串长度以开发者获取的付款码长度为准
- #微信支付宝个人收款码不能用于经营#
蜡笔需要小新的陪伴
我中午刷头条发现一条消息,说明年3月1日起,微信,支付宝个人收款码不能用于经营收款。就是原来各商家卖东西,客户扫码收款码付钱。那就有人会问,明年是不是就要拿现金或刷卡买菜就不能用支付宝或者是微信?其实微信,支付宝的商户号还是可以正常使用的。但是说如果小商贩给你他的个人收款码,就不要再刷了,因为法律上已经明确规定了,个人收款码不能用于经营活动。2022年3月1日起,“个人收款码禁用于经营性服务”及“
- 机器学习VS深度学习
nfgo
机器学习
机器学习(MachineLearning,ML)和深度学习(DeepLearning,DL)是人工智能(AI)的两个子领域,它们有许多相似之处,但在技术实现和应用范围上也有显著区别。下面从几个方面对两者进行区分:1.概念层面机器学习:是让计算机通过算法从数据中自动学习和改进的技术。它依赖于手动设计的特征和数学模型来进行学习,常用的模型有决策树、支持向量机、线性回归等。深度学习:是机器学习的一个子领
- 腾讯2018半年报基础分析
莫莫小熊
一.基础数据季度收入同比增长30%至736亿人民币,毛利同比增长22%至344亿人民币,但环比下降7%。半年收入同比增长39%至1472亿人民币,毛利同比增长33%至714亿人民币。二.战略解析腾讯对最近几月的重大战略列举如下:1.小程序小程序生态进一步加强,重点强调与微信支付(2亿日活跃账户消费者基础)等数字工具整合,扩大功能及用途。立足于原生移动应用的补充,想象空间巨大,预计会在用户体验、企业
- 分类算法可视化方法
dundunmm
数据挖掘分类数据挖掘人工智能可视化
可视化方法可以用于帮助理解分类算法的决策边界、性能和在不同数据集上的行为。下面列举几个常见的可视化方法。1.决策边界可视化这种方法用于可视化不同分类算法在二维特征空间中如何分隔不同类别。对于理解决策树、支持向量机(SVM)、逻辑回归和k近邻(k-NN)等模型的行为非常有用。importnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.datasets
- 时序预测|基于粒子群优化支持向量机的时间序列预测Matlab程序PSO-SVM 单变量和多变量 含基础模型
机器不会学习CL
智能优化算法时间序列预测支持向量机matlab算法
时序预测|基于粒子群优化支持向量机的时间序列预测Matlab程序PSO-SVM单变量和多变量含基础模型文章目录一、基本原理1.问题定义2.数据准备3.SVM模型构建4.粒子群优化(PSO)5.优化与模型训练6.模型评估与预测7.流程总结8.MATLAB实现概述二、实验结果三、核心代码四、代码获取五、总结时序预测|基于粒子群优化支持向量机的时间序列预测Matlab程序PSO-SVM单变量和多变量含基
- 【ML】支持向量机SVM及Python实现(详细)
2401_84009698
程序员支持向量机python算法
fromsklearn.preprocessingimportStandardScalerfrommatplotlib.colorsimportListedColormapfromsklearn.svmimportSVC###2.1加载数据样本加载样本数据及其分类标签iris=datasets.load_iris()X=iris.data[:,[2,3]]#按花瓣划分#X=iris.data[:,
- 视频号认证所需粉丝数量及认证粉丝价格,怎样才能通过视频号认证?
爱吃菠萝的鱼
视频号目前在各大应用市场均可搜索下载,并且还可以通过微信支付开通视频号,那开通视频号需要什么条件呢?下面就来给大家详细介绍一下。想要开通视频号需要满足以下几个条件:1.微信公众平台粉丝数量≥1000;2.个人创作者账号粉丝≥2000;3.视频号直播时长≥5分钟;4.至少拥有1条原创短视频。以上条件都满足的话,那么就可以向微信申请认证了,那认证时需要什么资料呢?视频号开播认证怎么弄:17762069
- 如何将wordpress网站做成微信小程序(我的第一款微信小程序)
shuihan198712
01作品信息作品名称:Axure技术小站作品类型:微信小程序开发日期:2019-07-25目前状态:刚开始,还在开发,上线时间未知02背景1、之前在做wordpress微信支付时候,偶尔发现了一篇,将wordpress网站做成微信小程序的文章。2、微信小程序这么火3、学习一下,了解下小程序开发的一些知识03准备工作1、个人知识储备:我没有相关的代码经验,之前稍微接触过一点点,零零散散,不足以独立写
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比