- Java 大视界 -- Java 大数据在智能体育中的应用与赛事分析(80)
青云交
大数据新视界Java大视界java大数据智能体育数据采集运动员训练赛事分析赛事预测
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- Java 大视界 -- Java 大数据在智能供应链中的应用与优化(76)
青云交
大数据新视界Java大视界大数据智能供应链数据采集整合数据存储管理需求预测物流调度风险管理
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- Spring Batch批处理操作与实践
面朝大海,春不暖,花不开
基础管理后台开发springbatch前端
SpringBatch是一个强大的批处理框架,专为处理大规模数据和执行复杂批处理任务而设计。它基于Spring框架构建,继承了Spring的许多优点,如依赖注入、事务管理等,同时提供了丰富的功能来简化批处理应用的开发。什么是批处理?批处理是指在后台运行的一系列操作,通常用于处理大量数据或执行长时间运行的任务。这些任务往往不需要用户交互,可以在非高峰时段运行,以减少对系统资源的影响。常见的批处理任务
- 深入解析Spring Cloud:微服务架构的利器(下)
Wells974
爪哇架构springcloud微服务
在上一篇文章中,我们介绍了SpringCloud的基本概念、核心组件以及如何在Java项目中使用SpringCloud进行服务注册与发现。本文将继续探讨SpringCloud的负载均衡、配置管理、服务熔断和API网关等高级特性。4.负载均衡4.1使用RibbonSpringCloudRibbon是一个客户端负载均衡器,与Eureka无缝集成,支持多种负载均衡策略。在服务消费者项目中,引入Ribbo
- try-except 中except IndexError与 ValueError的区别
HaoChen/ChenHao
python
案例1:try-except-ValueErrorw="我叫陈浩,毕业于谢菲尔德大学"try:w4=w.index("陈浩是最好的学生")print(w4)#输出结果:ValueError:substringnotfound,因为这里报错了,所以原字符串里面并没有这个字符串“陈浩是最好的学生”exceptValueError:print("ValueError:substringnotfound"
- 数据库MySQL 8.0.32安装包网盘资源下载(附教程)
听风说雨的人儿
数据库mysql百度云
如大家所熟悉的,MySQL是一个开源的关系型数据库管理系统(RDBMS)。它使用SQL(结构化查询语言)来管理数据,允许用户定义表、字段、索引和关系,并通过SQL语句来查询、更新和管理数据。MySQL支持多种操作系统,包括Windows、Linux和MacOS等,并且广泛用于各种应用程序中,如Web应用程序、数据仓库和电子商务系统等。MySQL的优势:成本效益与开源特性作为一个开源数据库,MySQ
- 【深度学习基础】什么是注意力机制
我的青春不太冷
深度学习人工智能注意力机制
文章目录一、注意力机制的核心地位:从补充到主导二、技术突破:从Transformer到多模态融合三、跨领域应用:从NLP到通用人工智能四、未来挑战与趋势结语参考链接注意力机制:深度学习的核心革命与未来基石在深度学习的发展历程中,注意力机制(AttentionMechanism)的引入堪称一场革命。它不仅解决了传统模型的根本性缺陷,更通过动态聚焦关键信息的能力,重塑了人工智能处理复杂任务的范式。本文
- 【机器学习】多元线性回归
T0uken
Python全栈开发1024程序员节机器学习算法线性回归
在实际应用中,许多问题都包含多个特征(输入变量),而不仅仅是单个输入变量。多元线性回归是线性回归的扩展,它能够处理多个输入特征并建立它们与目标变量的线性关系。本教程将系统性推演多元线性回归,包括向量化处理、特征放缩、梯度下降的收敛性和学习率选择等,并使用numpy实现。最后,我们会通过sklearn快速实现多元线性回归模型。多元线性回归模型简介多元线性回归的模型公式为:y=X⋅w+by=X\cdo
- 使用Python构建论坛爬虫:抓取论坛主题、标签和讨论量
Python爬虫项目
python爬虫开发语言信息可视化金融
引言随着互联网的发展,论坛作为一个信息交流的地方,承载了大量的讨论内容、主题和标签。通过抓取论坛的数据,用户可以了解最热的话题、讨论量大的主题以及与特定标签相关的内容。本篇博客将介绍如何使用Python构建一个论坛数据抓取爬虫,从论坛网站上抓取主题、标签和讨论量,并对数据进行存储和分析。目标与背景我们的目标是从多个论坛网站抓取以下内容:论坛主题:讨论的主要内容或话题。标签:与主题相关的分类信息。讨
- 【第15章:量子深度学习与未来趋势—15.3 量子深度学习在图像处理、自然语言处理等领域的应用潜力分析】
再见孙悟空_
#【深度学习・探索智能核心奥秘】深度学习机器学习人工智能音视频自然语言处理量子深度学习量子学习未来
一、开篇:为什么我们需要关注这场"量子+AI"的世纪联姻?各位技术爱好者们,今天我们要聊的这个话题,可能是未来十年最值得押注的技术革命——量子深度学习。这不是简单的"1+1=2"的物理叠加,而是一场可能彻底改写AI发展轨迹的范式转移。想象这样一个场景:你现在训练一个GPT-5级别的模型,不需要耗费价值上亿美元的算力资源,不需要等待数周的训练时间,甚至不需要纠结于模型参数是否过拟合。这就是量子深度学
- 【第15章:量子深度学习与未来趋势—15.1 量子计算基础与量子机器学习的发展背景】
再见孙悟空_
#【深度学习・探索智能核心奥秘】机器翻译自然语言处理计算机视觉量子计算人工智能深度学习机器学习
想象一下,你正在用ChatGPT生成一篇小说,突然它卡在"主角穿越虫洞"的情节上——这不是因为想象力枯竭,而是传统计算机的晶体管已经烧到冒烟。当前AI大模型的参数规模每4个月翻一番,但摩尔定律的终结让经典计算机的算力增长首次跟不上AI的进化速度。这时候,量子计算带着它的"超能力"登场了:1台50量子位的量子计算机,处理某些问题的速度可达超级计算机的1亿倍。这场算力革命,正在改写深度学习的游戏规则。
- pytest.fixture详解:如何有效管理测试的前置条件与后置条件
测试不打烊
接口自动化pytest
pytest.fixture是pytest的一个重要特性,用于创建和管理测试的前置条件(setup)和后置条件(teardown)。它允许你为测试提供一些预先准备好的资源或数据,而不需要在每个测试函数中重复这些逻辑。基础概念pytest.fixture是一个装饰器,标记一个函数作为“夹具”(fixture),这个夹具会在每次测试函数运行前被调用,并可以在测试函数中作为参数使用。测试函数中的夹具会自
- 网络瓶颈分析与排查:性能测试中的隐秘敌人
测试不打烊
性能测试网络压力测试
性能测试问题定位-网络瓶颈分析与案例解析在性能测试中,网络往往是性能瓶颈的一个关键因素。网络延迟、带宽、连接数等问题都可能影响系统的整体性能。在本文中,我们将结合性能测试的过程,从网络监控、常见的网络瓶颈问题以及如何使用Linux工具(如netstat、iftop、ping、traceroute等)进行详细的瓶颈定位。我们还会通过实际案例进行说明,帮助你更好地理解网络瓶颈的排查方法。1.网络瓶颈的
- ch02离散仿真引擎基础——Unity3D学习
yesor_not
3D游戏学习c#unity游戏游戏策划
ch02离散仿真引擎基础——Unity3D学习一、简答题1.解释游戏对象(GameObjects)和资源(Assets)的区别与联系游戏对象(GameObjects):一般为玩家,敌人,环境等资源(Assets):一般包括声音,脚本,材质等区别与联系:对象一般是一些资源的集合体资源可以被多个对象使用资源作为模版,可实例化游戏中具体的对象。2、下载几个游戏案例,分别总结资源、对象组织的结构(指资源的
- lua 5.1语法约定
xiejunna
java
Lua5.1参考手册由罗伯特·Ierusalimschy路易斯HenriquedeFigueiredo沃尔德蔡氏‚一个版权©2006A¢A€“2012Lua.org,银行业者。免费的根据Lua许可证。内容一个‚·指数一个‚·其他版本一个‚·英语一个‚·portuguAƒAª年代一个‚·espaAƒA±ol1A¢A€“介绍Lua是一个扩展编程语言设计的支持一般过程式编程与数据描述设施。它还提供了很好
- 【瀑布流插件】vue-masonry
春晓_春眠花落
vue.jsjavascript前端
**最近一直在画静态页面,有个图片列表,布局很紧凑,图片宽度一样,高度不一样,但是效果图上都是紧挨在一起,我用普通的v-for循环加css布局,它会以这一行最高的那张图片的高度为准,导致图片高度小的,下一行不能紧挨在一起**如图:但是我要的效果是这样的,如图:依靠vue-masonry,实现了一些简单的功能,可参考这篇文章,讲的比较详细《Vue插件》瀑布流插件vue-masonry的使用与踩坑记录
- 语音与自然语言处理(NLP):智能交互的核心技术
给生活加糖!
热门知识自然语言处理交互人工智能
随着人工智能(AI)技术的飞速发展,语音识别与自然语言处理(NaturalLanguageProcessing,NLP)成为了智能交互系统的核心技术。它们不仅改变了人们与计算机、设备的交互方式,也推动了众多行业的革新。从智能助手(如苹果的Siri、亚马逊的Alexa)到机器翻译、自动客服系统,语音和NLP技术正逐步融入日常生活,改善我们与数字世界的沟通方式。一、什么是语音识别与自然语言处理(NLP
- asp.net javascrip获取session的值_一篇文章搞定 Django Cookie 与 Session
weixin_39962285
asp.nethtml获取session的值session保存密码session失效前端怎么获取session的值
cookieCookie的由来大家都知道HTTP协议是无状态的。无状态的意思是每次请求都是独立的,它的执行情况和结果与前面的请求和之后的请求都无直接关系,它不会受前面的请求响应情况直接影响,也不会直接影响后面的请求响应情况。一句有意思的话来描述就是人生只如初见,对服务器来说,每次的请求都是全新的。状态可以理解为客户端和服务器在某次会话中产生的数据,那无状态的就以为这些数据不会被保留。会话中产生的数
- Lua 5.1中文编程手册:全面指南与实践
元楼
本文还有配套的精品资源,点击获取简介:Lua是一种轻量级脚本语言,常嵌入到应用程序中提供扩展性。本手册是Lua5.1版本的官方文档中文翻译,涵盖了语法、特性到使用方法的全面指南。内容包括基础语法、数据类型、表、控制结构、函数、模块、元编程、错误处理、C接口、垃圾收集、线程及标准库等关键概念。此外,还包含如何解压和使用手册的说明。手册适用于各级别开发者,并为多个应用领域提供了实践指导。1.Lua语言
- Knox原理与代码实例讲解
AI天才研究院
计算DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Knox原理与代码实例讲解1.背景介绍在现代分布式系统中,安全性和隔离性是非常重要的需求。ApacheKnox是一个反向代理服务器,旨在为ApacheHadoop集群提供单一入口点,增强安全性和集中化管理。它位于Hadoop集群与客户端应用程序之间,充当网关和负载均衡器的角色。Knox的主要目标是:提供集中式身份验证和授权,减轻客户端应用程序的负担。实现多租户支持,允许不同的组织或部门安全地共享同
- 算法基础1.3:双指针,位运算,离散化,区间合并
sunluyang521
算法基础算法
双指针for(inti=0,j=0;iusingnamespacestd;constintN=100010;intn;intq[N],s[N];//s存的是当前j到i这个区间里面每一个数出现的次数。intmain(){scanf("%d",&n);for(inti=0;i1)s[q[j++]]--;//有重复的数,把它拿出去,表示这个数减1res=max(res,i-j+1);//更新答案}cou
- 常见数据结构的简介(基本概念 & 操作 & 时间复杂度)
子诚之
编程
文章目录0.概览1.线性表、栈和队列2.数组2.1基本操作1)时间复杂度2)案例3.字符串3.1存储结构3.2基本操作1)时间复杂度2)案例:最大公共字符串4.二叉树4.1储存结构4.2基本操作1)时间复杂度2)案例:使用字典树判断字符串是否存在5.哈希/散列表5.1哈希函数5.2基本操作1)时间复杂度2)案例:构建哈希表《重学数据结构与算法》学习笔记0.概览数据结构增删查特点线性表变长栈队列数组
- 论deepseek软件底层原理
星糖曙光
磨刀不误砍柴工(工具重要性)AI作画经验分享人工智能笔记
DeepSeek软件底层原理剖析一、核心架构基石(一)混合专家架构(MoE)架构本质:MoE架构模拟人类专家协作模式,构建一个专家集合。每个专家模块专门负责特定类型或领域知识的处理。任务分配机制:当模型面临输入任务时,类似智能调度系统的“路由器”会分析任务特征,将其导向最适配的专家模块。如处理医学文本时,将任务分配给擅长医学知识处理的专家,避免通用模块处理的低效性,极大提升计算效率与任务处理的针对
- Pandas使用教程 - 多级索引 (MultiIndex)
闲人编程
Pandas使用教程pandasMultiIndex多级索引元组分组聚合python
目录1.什么是MultiIndex?2.MultiIndex的创建2.1从多个数组或列表创建MultiIndex2.2从元组列表创建MultiIndex2.3使用DataFrame的set_index()创建MultiIndex3.MultiIndex的基本操作3.1索引与切片3.1.1访问特定级别的数据3.1.2使用xs()方法进行跨层次切片3.2重新排列和重设索引3.2.1swaplevel(
- Python随机森林算法详解与案例实现
闲人编程
python算法python随机森林数据分析人工智能
目录Python随机森林算法详解与案例实现1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1数据集介绍4.2代码实现4.3代码解释4.4运行结果5、回归案例:使用随机森林预测波士顿房价5.1数据集介绍5.2代码实现5.3代码解释5.4运行结果6、随机森林的优缺点7、改进方向8、应用场景9、总结Python随机森林算法详解与案例实现1、随机森林算法概述随
- Python 循环神经网络(RNN)算法详解与应用案例
闲人编程
pythonpythonrnn算法循环神经网络深度学习文本生成
目录Python循环神经网络(RNN)算法详解与应用案例引言一、RNN的基本原理1.1RNN的结构1.2RNN的优势与挑战二、Python中RNN的面向对象实现2.1`RNNCell`类的实现2.2`RNNModel`类的实现2.3`Trainer`类的实现三、案例分析3.1序列预测3.1.1数据准备3.1.2模型训练3.1.3结果分析3.2文本生成3.2.1数据准备3.2.2模型训练3.2.3文
- SUNMATE:SMBJ110A瞬态抑制二极管的规格与应用要点
GR4337
二极管电子元器件嵌入式硬件python开发语言
一、基本特性类型:贴片瞬变抑制TVS二极管。极性:单向。封装:表面贴装,如DO-214AA封装,优化了电路板空间,具有低电感、塑料包装(具有保险商实验室可燃性94V-0认证)等特点。功率:具有600W的峰值功率能力,在10×1000μs波形下的重复率(占空比)为0.01%。响应速度:快速响应时间,从0伏特到最小击穿电压通常小于1.0ps。温度特性:高温焊接保证,如260°C/40秒或250°C/1
- 本地部署model scope魔搭大模型流程
CQller
python算法深度学习机器学习jupyterpytorch
一、安装python二、安装Gradio三、添加镜像加速四、运行字符串倒叙五、运行绘图六、安装常用软件包和库七、我目前使用的软件包和库简介八、文字生成图片AI模型九、文字回复AI模型一、安装python可参考安装步骤:python学习笔记-python安装与环境变量配置_python环境变量-CSDN博客二、安装Gradio在cmd执行以下命令。Gradio封装了功能丰富的前端用户界面,一会儿用来
- 电脑录屏软件 班迪录屏 Bandicam v8.0 注册版 下载与使用说明
2401_89543598
电脑windows
Bandicam是一款电脑录屏软件。主要功能:多模式录制:支持录制屏幕、游戏画面以及设备内容(如HDMI输入和摄像头)。自由调整录制区域:你可以选择全屏录制,也可以自定义录屏分辨率,满足多种需求。鼠标追随功能:录制时可追随鼠标移动,聚焦特定操作区域。重复捕捉功能:支持反复录制屏幕内容,方便制作教程或解说视频。快捷键设置:自定义快捷键,录制操作更加便捷高效。双音频混合录制:提供同时录制系统音效和麦克
- halcon的Blob分析方法
斯人已去忆犹在
计算机视觉人工智能图像处理
阈值分割法图像分割常用方法就是阈值分割法,它不仅可以极大的压缩数据量,而且也大大简化了分析和处理步骤。阈值分割法是一种传统的最常用的图像分割方法,特别适用于目标和背景占据不同灰度级范围的图像。阈值分割是一种按图像像素灰度幅度进行分割的方法,把图像的灰度分成不同的等级,然后用设置灰度门限(阈值)的方法确定有意义的区域或要分割物体的边界。阈值分割的优点是计算简单、运算效率较高、速度快。阈值分割的几个难
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号