- Python从0到100(八十一):神经网络-Fashion MNIST数据集取得最高的识别准确率
是Dream呀
python神经网络开发语言
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 老玩童:互联网智慧助老平台——科技赋能银发族,开启智慧养老新生活
IT源码大师
科技生活
详细描述:1.引言随着全球老龄化社会的加速到来,老年人的生活质量和社会参与度成为社会关注的焦点。传统的养老服务模式往往存在资源不足、服务单一、效率低下等问题,难以满足老年人日益增长的多样化需求。基于互联网技术的智慧助老平台“老玩童”,通过整合物联网、大数据、人工智能等先进技术,构建了一个全方位、智能化、个性化的助老服务体系,为老年人及其家庭提供了全新的解决方案。本文将深入探讨这一平台的核心理念、技
- 基于STM32的智慧农业控制系统设计:python可视化、UART、I2C、TCP/HTTP技术
极客小张
stm32pythontcp/ip单片机物联网毕业设计课程设计
1.项目选题与需求分析选题背景和动机全球农业正面临着气候变化、人口增长与资源短缺等多重挑战。传统农业生产方法难以满足现代社会对高效、可持续农业的需求。智慧农业的概念应运而生,旨在通过高科技手段提升农业生产效率、降低人力成本、提高作物质量和产量。本项目设计的智慧农业大棚系统,基于STM32C8系列微控制器,集成多种传感器与执行器,旨在实现对大棚环境的智能监控与管理。目标用户和市场需求分析目标用户包括
- 什么是ROS2
听风胖耗子
机器人
ROS是机器人操作系统的简称,它本身并不是一个操作系统,而是可以安装在现在已有的操作系统(Linux、Windows、Mac)上的一组用于构建机器人应用程序的软件库和工具集。ROS包括两个版本ROS1和ROS2,ROS1是在2007年由斯坦福大学人工智能实验室与机器人技术公司WillowGarage为了个人机器人项目的合作而开发的,2008年后由WillowGarage来进行推动,目前由开源机器人
- 从零开始大模型开发与微调:汉字拼音数据集处理
AGI大模型与大数据研究院
大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
从零开始大模型开发与微调:汉字拼音数据集处理1.背景介绍1.1问题的由来在人工智能领域,自然语言处理(NLP)是一项基础且重要的研究方向。随着深度学习技术的飞速发展,大规模语言模型(LargeLanguageModel,LLM)在NLP领域取得了显著的成果。然而,LLM的训练与微调过程往往需要海量的文本数据,而这些数据通常以自然语言形式存在,难以直接用于模型训练。因此,如何从自然语言数据中提取结构
- ROS2总体架构
听风胖耗子
架构机器人
ROS2框架从系统架构上,ROS2可以划分为三层:应用层(ApplicationLayer)、中间层(MiddlewareLayer)、操作系统层(OSLayer)。应用层是指开发者构建的应用程序,应用程序中是以功能包为核心的,在功能包中可以包含源码、数据定义、接口等内容;中间层主要由数据分发服务DDS与ROS2封装的关于机器人开发的中间件组成,DDS是一种去中心化的数据通讯方式,它引入了服务质量
- 500多种目标检测数据集下载地址汇总(YOLO、VOC)
2401_85863780
目标检测YOLO目标跟踪数据集yolo
名称辣椒病害分类数据集9076张12类别.7z【目标检测数据集】光伏电池异常检测数据集VOC+YOLO格式219张2类别_2.zip【目标检测数据集】钢丝绳破损灼伤缺陷检测数据集VOC+YOLO格式1318张2类别.7z【目标检测数据集】狗狗数据集5912张VOC+YOLO格式.zip【目标检测数据集】工地安全帽佩戴检测4000张VOC+YOLO格式.rar【目标检测数据集】手势识别0-9数字VO
- 2024年开源数据集地址汇总包含最新最全数据集在这你可以找到任何想要数据集
萌萌哒240
深度学习目标跟踪人工智能计算机视觉
目标检测数据集和图像分类数据集是计算机视觉领域的两大重要资源,它们为训练和评估各种视觉模型提供了关键的数据支持。目标检测数据集主要用于训练模型以识别和定位图像中的特定物体。这类数据集通常包含大量的标注图像,每张图像中都标记了多个物体的位置和类别。例如,COCO(CommonObjectsinContext)数据集就是一个常用的目标检测数据集,它包含了80个类别的日常物体,如人、车、动物等,并提供了
- 水稻和杂草检测数据集VOC+YOLO格式1356张2类别
FL1623863129
数据集YOLO深度学习机器学习
数据集格式:PascalVOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):1356标注数量(xml文件个数):1356标注数量(txt文件个数):1356标注类别数:2标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["crop","we
- 物理测试暴击AI圈,DeepSeek R1稳超o1、Claude,我们已进入RL黄金时代
AI生成曾小健
LLM大语言模型人工智能
物理测试暴击AI圈,DeepSeekR1稳超o1、Claude,我们已进入RL黄金时代原创关注大模型的机器之心2025年01月25日12:06北京机器之心报道我们都没预料到,AI领域的2025年是这样开始的。DeepSeekR1真是太厉害了!最近,「神秘的东方力量」DeepSeek正在「硬控」硅谷。我让R1详细解释勾股定理。这一切都是AI在不到30秒时间里一次性完成的,没出任何错。简单来说,its
- 定西市房屋建筑轮廓面图层shp格式arcgis数据有高度字段+无偏移坐标分析测评
天赐信息科技
arcgis
【定西市房屋建筑轮廓面图层shp格式arcgis数据有高度字段+无偏移坐标+2022年】这一资源是GIS领域的重要数据集,主要用于城市规划、地理分析和建筑管理等方面。这份数据集包含了一系列关于定西市房屋建筑的信息,以下是其主要知识点的详细解释:SHP格式:SHP(Shapefile)是Esri公司开发的一种矢量数据格式,广泛用于地理信息系统中,它可以存储点、线、多边形等几何对象以及与之相关的属性数
- 【Legged Gym】Legged Gym训练参数详解与自定义任务实现
啵啵啵啵哲
人工智能
LeggedGym训练参数详解与自定义任务实现在进行机器人强化学习训练时,LeggedGym提供了一套灵活的参数配置系统,以适应不同的训练需求和环境。本文将详细解析LeggedGym训练时的关键参数,并特别强调如何通过自定义task来实现新任务的训练。同时,也会解释rl_device和sim_device的赋值方法及其区别。1.参数详解1.1.任务与实验配置--task:指定训练任务的类型,如an
- isaac gym 和 legged gym 环境搭建记录
咋学都不累zgc
ubuntu
今天使用fanziqi大佬的rl_docker搭建了一个isaacgym下的四足机器人训练环境,成功运行leggedgym项目下的例子,记录一下搭建流程基础配置OperatingSystem:Ubuntu22.04.5LTSKernel:Linux6.8.0-49-genericArchitecture:x86-64HardwareVendor:MECHREVOHardwareModel:Yaos
- Jupyter Notebook代码实现了一个简单的全连接神经网络,用于对MNIST手写数字数据集进行分类任务
pk_xz123456
PyTorch入门案例jupyter神经网络分类
{"cells":[{"cell_type":"code","execution_count":7,"metadata":{
- 波士顿房价预测
苏轼喜欢玩电脑
浙师大506实验室
波士顿房价预测任务波士顿地区的房价是由诸多因素影响的。该数据集统计了13种可能影响房价的因素和该类型房屋的均价,期望构建一个基于13个因素进行房价预测的模型,因为房价是一个连续值,所以房价预测显然是一个回归任务。用最简单的线性回归模型解决这个问题,并用神经网络来实现这个模型。线性回归模型假设房价和各影响因素之间能够用线性关系来描述:y=∑j=1Mxjwj+by={\sum_{j=1}^Mx_jw_
- 索引的底层数据结构、B+树的结构、为什么InnoDB使用B+树而不是B树呢
因特麦克斯
数据库
索引的底层数据结构MySQL中常用的是Hash索引和B+树索引Hash索引:基于哈希表实现的,查找速度非常快,但是由于哈希表的特性,不支持范围查找和排序,在MySQL中支持的哈希索引是自适应的,不能手动创建B+树的结构B+树是一种高效的多路平衡树,适合磁盘存储和范围查询。它的结构特点包括数据集中在叶子节点、叶子节点连接成链表、内部节点仅存储键值和指针。在数据库和文件系统中,B+树被广泛应用于索引和
- AI在虚拟客户服务中的应用:提供24_7支持
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
AI在虚拟客户服务中的应用:提供24/7支持关键词:虚拟客服,自然语言处理(NLP),聊天机器人,对话系统,深度学习,用户支持,自动化1.背景介绍随着互联网和移动互联网的迅速发展,客户服务成为各大企业提升竞争力的重要环节。但传统的客服模式存在诸多痛点:人力成本高、响应时间慢、工作时间有限等。在企业面临全时用户需求和竞争压力日益加剧的当下,如何以更低的成本、更快的速度、更高效的资源利用率,持续提供优
- 柳暗花明又一村:Seq2Seq编码器解码器架构
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
Seq2Seq,编码器-解码器,自然语言处理,机器翻译,文本生成,循环神经网络,长短期记忆网络1.背景介绍在人工智能领域,自然语言处理(NLP)始终是研究的热点之一。从机器翻译到文本摘要,从对话系统到问答机器人,Seq2Seq编码器-解码器架构在众多NLP任务中展现出强大的能力。传统的机器翻译方法通常依赖于统计模型和规则引擎,难以捕捉语言的复杂性和语义关系。随着深度学习的兴起,Seq2Seq架构为
- Scikit-learn_聚类算法_K均值聚类
飞Link
Water算法机器学习人工智能
一.描述首先从X数据集中选择k个样本作为质心,然后重复以下两个步骤来更新质心,直到质心不再显著移动为:第一步将每个样本分配到距离最近的质心第二步根据每二个质心所有样本的平均值来创建新的质心二.用法和参数KMeans类MiniBatchKMeans类:是KMeans类的变种,他是用小批量来减少计算时间,而多个批次仍然尝试优化相同的目标函数。小批量是输入数据的子集,是每次训练迭代中的随机抽样。小批量大
- 试了下Cursor,感觉程序员工种危险了
java
大家好,我是汤师爷~今年8月份,AI编程工具Cursor在开发者社区彻底火了。在Twitter平台上,Cloudflare副总裁分享了一段视频,展示了一个令人震惊的案例。他年仅8岁的女儿,仅用CursorAI这款工具,在短短45分钟内,就成功构建了一个功能完整的聊天机器人。最近,另一个案例进一步证实了AI编程的潜力。内容创作者、UP主@AI进化论-花生,完全没有编程经验,仅凭CursorAI编程工
- 【15-聚类分析入门:使用Scikit-learn进行K-means聚类】
是阿牛啊
机器学习回归预测大数据挖掘kmeans聚类python机器学习人工智能sklearn性能优化
文章目录前言K-means聚类的原理Scikit-learn中的K-means实现安装与导入生成模拟数据应用K-means聚类可视化聚类结果选择K的值总结前言 聚类分析是一种无监督学习方法,用于将数据集中的样本分组成若干个簇(cluster)。K-means是最广泛使用的聚类算法之一,其核心思想是将数据点分配到K个簇中,使得每个点到其簇中心的距离之和最小。在本文中,我们将介绍如何使用Scikit
- 【机器学习与数据挖掘实战】案例11:基于灰色预测和SVR的企业所得税预测分析
Francek Chen
机器学习与数据挖掘实战机器学习数据挖掘灰色预测SVR人工智能
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈机器学习与数据挖掘实战⌋⌋⌋机器学习是人工智能的一个分支,专注于让计算机系统通过数据学习和改进。它利用统计和计算方法,使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数据集中发现模式、关联和异常的过程,旨在提取有价值的信息和知识。机器学习为数据挖掘提供了强大的分析工具,而数据挖掘则是机器学习应用的重要领域,两者相辅相成,共同推动
- Scikit-learn提供了哪些机器学习算法以及如何使用Scikit-learn进行模型训练和评估
Java资深爱好者
机器学习scikit-learn算法
Scikit-learn库的使用一、Scikit-learn提供的机器学习算法Scikit-learn(通常简称为sklearn)是一个广泛使用的Python机器学习库,它提供了多种用于数据挖掘和数据分析的算法。Scikit-learn支持的机器学习算法可以大致分为以下几类:分类算法:支持向量机(SVM)随机森林(RandomForest)逻辑回归(LogisticRegression)朴素贝叶斯
- 新浪微博签到数据集可视化系列(一):数据介绍
雪山青木
微博数据爬取新浪微博python爬虫
微博签到是指用户在发布微博内容的同时标记自身位置的行为。微博签到数据不仅反映了用户在特定时间的所处位置,还能体现其活动轨迹、兴趣偏好以及与周围环境的互动关系,具有高频性、实时性等特征,以及蕴含丰富的时间、空间和语义等多维信息,在社会科学、地理信息科学、城市研究、市场营销等领域应用广泛。微博签到数据主要由用户信息、地点(POI)信息与签到微博信息三部分组成,有用户昵称、性别、生日、注册地、IP归属地
- 【llm对话系统】大模型 Llama 源码分析之 Flash Attention
kakaZhui
llama人工智能AIGCchatgpt
1.写在前面近年来,基于Transformer架构的大型语言模型(LLM)在自然语言处理(NLP)领域取得了巨大的成功。Transformer的核心组件是自注意力(Self-Attention)机制,它允许模型捕捉输入序列中不同位置之间的关系。然而,标准的自注意力机制的计算复杂度与序列长度的平方成正比,这使得它在处理长序列时效率低下。为了解决这个问题,FlashAttention被提出,它是一种高
- 【深度学习】因果推断与机器学习的高级实践 数学建模_问题根因 分析 机器学习
2401_84239830
程序员深度学习机器学习数学建模
现阶段深度学习有三大特征:数据驱动:即数据训练,将数据输入到模型中进行训练;关联学习:模型基于给定训练数据集,进行关联学习;概率输出:即最后的输出,判断这个图片有“狗“的概率是多少。以数据驱动、关联学习、概率输出为特征的深度学习存在什么问题呢?以一个简单的图片识别问题为例:识别一张图片中是否有狗。在很多预测问题中,我们拿到的数据集往往都是有偏的,比如我们拿到的数据中有80%的图片中狗都在草地上,这
- 全覆盖路径规划-精准细胞覆盖算法
码厂一粒沙
记录算法
今天,咱们来聊聊这个传统的精准细胞覆盖算法,算法的描述挺抽象的,这里尽量用易于理解的语言来讲解一下,它就像是给机器人安排一个任务,让它把一块地方仔仔细细地走一遍,下面详细说说它是怎么做的。整体思路想象你要打扫一个大房间,你得有个计划,知道先打扫哪块,再打扫哪块,最后把整个房间都打扫干净。精准细胞覆盖算法就是给机器人规划这样的“打扫路线”,让它能把给定的空间都走遍。具体步骤第一步:把空间“切块”并记
- Python 批量下载 ERA-5 Reanalysis 数据
zhe是我呀
数据下载ERA-5数据下载python
ECMWF大气再分析数据集ERA-interim已被ERA-5数据集取代,ERA-5详细信息看这里下面介绍下载的具体步骤:1.要下载ERA-5数据集,需要先注册一个CDS账号。登录之后进入ClimateDataStoreAPI页面复制自己的key和url,如下图2.创建.cdsapirc文件,windows系统就是自己的用户目录下面,linux就是根目录,内容为自己的key和url,示例如下图
- 【自然语言处理(NLP)】基于Transformer架构的预训练语言模型:BERT 训练之数据集处理、训练代码实现
道友老李
自然语言处理(NLP)自然语言处理transformer
文章目录介绍BERT训练之数据集处理BERT原理及模型代码实现数据集处理导包加载数据生成下一句预测任务的数据从段落中获取nsp数据生成遮蔽语言模型任务的数据从token中获取mlm数据将文本转换为预训练数据集创建Dataset加载WikiText-2数据集BERT训练代码实现导包加载数据构建BERT模型模型损失训练获取BERT编码器个人主页:道友老李欢迎加入社区:道友老李的学习社区介绍**自然语言
- C++五子棋游戏-含禁手
早莺_huachen
游戏c++
五子棋游戏https://github.com/2810zhc/Simple_Gomoku项目简介这是一个简单的五子棋游戏,支持玩家对战、玩家与机器人对战两种模式。游戏支持计时功能,并具有判定禁手与胜负的规则。采用了博弈树且包含基本的禁手功能(“三、三”“四、四”“长连”),考虑到了不同的禁手可能,如连续活三和跳跃活三。功能概述玩家对战:两个玩家轮流下棋,直到某一方获胜或棋盘满为止。人机对战:玩家
- Hadoop(一)
朱辉辉33
hadooplinux
今天在诺基亚第一天开始培训大数据,因为之前没接触过Linux,所以这次一起学了,任务量还是蛮大的。
首先下载安装了Xshell软件,然后公司给了账号密码连接上了河南郑州那边的服务器,接下来开始按照给的资料学习,全英文的,头也不讲解,说锻炼我们的学习能力,然后就开始跌跌撞撞的自学。这里写部分已经运行成功的代码吧.
在hdfs下,运行hadoop fs -mkdir /u
- maven An error occurred while filtering resources
blackproof
maven报错
转:http://stackoverflow.com/questions/18145774/eclipse-an-error-occurred-while-filtering-resources
maven报错:
maven An error occurred while filtering resources
Maven -> Update Proje
- jdk常用故障排查命令
daysinsun
jvm
linux下常见定位命令:
1、jps 输出Java进程
-q 只输出进程ID的名称,省略主类的名称;
-m 输出进程启动时传递给main函数的参数;
&nb
- java 位移运算与乘法运算
周凡杨
java位移运算乘法
对于 JAVA 编程中,适当的采用位移运算,会减少代码的运行时间,提高项目的运行效率。这个可以从一道面试题说起:
问题:
用最有效率的方法算出2 乘以8 等於几?”
答案:2 << 3
由此就引发了我的思考,为什么位移运算会比乘法运算更快呢?其实简单的想想,计算机的内存是用由 0 和 1 组成的二
- java中的枚举(enmu)
g21121
java
从jdk1.5开始,java增加了enum(枚举)这个类型,但是大家在平时运用中还是比较少用到枚举的,而且很多人和我一样对枚举一知半解,下面就跟大家一起学习下enmu枚举。先看一个最简单的枚举类型,一个返回类型的枚举:
public enum ResultType {
/**
* 成功
*/
SUCCESS,
/**
* 失败
*/
FAIL,
- MQ初级学习
510888780
activemq
1.下载ActiveMQ
去官方网站下载:http://activemq.apache.org/
2.运行ActiveMQ
解压缩apache-activemq-5.9.0-bin.zip到C盘,然后双击apache-activemq-5.9.0-\bin\activemq-admin.bat运行ActiveMQ程序。
启动ActiveMQ以后,登陆:http://localhos
- Spring_Transactional_Propagation
布衣凌宇
springtransactional
//事务传播属性
@Transactional(propagation=Propagation.REQUIRED)//如果有事务,那么加入事务,没有的话新创建一个
@Transactional(propagation=Propagation.NOT_SUPPORTED)//这个方法不开启事务
@Transactional(propagation=Propagation.REQUIREDS_N
- 我的spring学习笔记12-idref与ref的区别
aijuans
spring
idref用来将容器内其他bean的id传给<constructor-arg>/<property>元素,同时提供错误验证功能。例如:
<bean id ="theTargetBean" class="..." />
<bean id ="theClientBean" class=&quo
- Jqplot之折线图
antlove
jsjqueryWebtimeseriesjqplot
timeseriesChart.html
<script type="text/javascript" src="jslib/jquery.min.js"></script>
<script type="text/javascript" src="jslib/excanvas.min.js&
- JDBC中事务处理应用
百合不是茶
javaJDBC编程事务控制语句
解释事务的概念; 事务控制是sql语句中的核心之一;事务控制的作用就是保证数据的正常执行与异常之后可以恢复
事务常用命令:
Commit提交
- [转]ConcurrentHashMap Collections.synchronizedMap和Hashtable讨论
bijian1013
java多线程线程安全HashMap
在Java类库中出现的第一个关联的集合类是Hashtable,它是JDK1.0的一部分。 Hashtable提供了一种易于使用的、线程安全的、关联的map功能,这当然也是方便的。然而,线程安全性是凭代价换来的――Hashtable的所有方法都是同步的。此时,无竞争的同步会导致可观的性能代价。Hashtable的后继者HashMap是作为JDK1.2中的集合框架的一部分出现的,它通过提供一个不同步的
- ng-if与ng-show、ng-hide指令的区别和注意事项
bijian1013
JavaScriptAngularJS
angularJS中的ng-show、ng-hide、ng-if指令都可以用来控制dom元素的显示或隐藏。ng-show和ng-hide根据所给表达式的值来显示或隐藏HTML元素。当赋值给ng-show指令的值为false时元素会被隐藏,值为true时元素会显示。ng-hide功能类似,使用方式相反。元素的显示或
- 【持久化框架MyBatis3七】MyBatis3定义typeHandler
bit1129
TypeHandler
什么是typeHandler?
typeHandler用于将某个类型的数据映射到表的某一列上,以完成MyBatis列跟某个属性的映射
内置typeHandler
MyBatis内置了很多typeHandler,这写typeHandler通过org.apache.ibatis.type.TypeHandlerRegistry进行注册,比如对于日期型数据的typeHandler,
- 上传下载文件rz,sz命令
bitcarter
linux命令rz
刚开始使用rz上传和sz下载命令:
因为我们是通过secureCRT终端工具进行使用的所以会有上传下载这样的需求:
我遇到的问题:
sz下载A文件10M左右,没有问题
但是将这个文件A再传到另一天服务器上时就出现传不上去,甚至出现乱码,死掉现象,具体问题
解决方法:
上传命令改为;rz -ybe
下载命令改为:sz -be filename
如果还是有问题:
那就是文
- 通过ngx-lua来统计nginx上的虚拟主机性能数据
ronin47
ngx-lua 统计 解禁ip
介绍
以前我们为nginx做统计,都是通过对日志的分析来完成.比较麻烦,现在基于ngx_lua插件,开发了实时统计站点状态的脚本,解放生产力.项目主页: https://github.com/skyeydemon/ngx-lua-stats 功能
支持分不同虚拟主机统计, 同一个虚拟主机下可以分不同的location统计.
可以统计与query-times request-time
- java-68-把数组排成最小的数。一个正整数数组,将它们连接起来排成一个数,输出能排出的所有数字中最小的。例如输入数组{32, 321},则输出32132
bylijinnan
java
import java.util.Arrays;
import java.util.Comparator;
public class MinNumFromIntArray {
/**
* Q68输入一个正整数数组,将它们连接起来排成一个数,输出能排出的所有数字中最小的一个。
* 例如输入数组{32, 321},则输出这两个能排成的最小数字32132。请给出解决问题
- Oracle基本操作
ccii
Oracle SQL总结Oracle SQL语法Oracle基本操作Oracle SQL
一、表操作
1. 常用数据类型
NUMBER(p,s):可变长度的数字。p表示整数加小数的最大位数,s为最大小数位数。支持最大精度为38位
NVARCHAR2(size):变长字符串,最大长度为4000字节(以字符数为单位)
VARCHAR2(size):变长字符串,最大长度为4000字节(以字节数为单位)
CHAR(size):定长字符串,最大长度为2000字节,最小为1字节,默认
- [强人工智能]实现强人工智能的路线图
comsci
人工智能
1:创建一个用于记录拓扑网络连接的矩阵数据表
2:自动构造或者人工复制一个包含10万个连接(1000*1000)的流程图
3:将这个流程图导入到矩阵数据表中
4:在矩阵的每个有意义的节点中嵌入一段简单的
- 给Tomcat,Apache配置gzip压缩(HTTP压缩)功能
cwqcwqmax9
apache
背景:
HTTP 压缩可以大大提高浏览网站的速度,它的原理是,在客户端请求网页后,从服务器端将网页文件压缩,再下载到客户端,由客户端的浏览器负责解压缩并浏览。相对于普通的浏览过程HTML ,CSS,Javascript , Text ,它可以节省40%左右的流量。更为重要的是,它可以对动态生成的,包括CGI、PHP , JSP , ASP , Servlet,SHTML等输出的网页也能进行压缩,
- SpringMVC and Struts2
dashuaifu
struts2springMVC
SpringMVC VS Struts2
1:
spring3开发效率高于struts
2:
spring3 mvc可以认为已经100%零配置
3:
struts2是类级别的拦截, 一个类对应一个request上下文,
springmvc是方法级别的拦截,一个方法对应一个request上下文,而方法同时又跟一个url对应
所以说从架构本身上 spring3 mvc就容易实现r
- windows常用命令行命令
dcj3sjt126com
windowscmdcommand
在windows系统中,点击开始-运行,可以直接输入命令行,快速打开一些原本需要多次点击图标才能打开的界面,如常用的输入cmd打开dos命令行,输入taskmgr打开任务管理器。此处列出了网上搜集到的一些常用命令。winver 检查windows版本 wmimgmt.msc 打开windows管理体系结构(wmi) wupdmgr windows更新程序 wscrip
- 再看知名应用背后的第三方开源项目
dcj3sjt126com
ios
知名应用程序的设计和技术一直都是开发者需要学习的,同样这些应用所使用的开源框架也是不可忽视的一部分。此前《
iOS第三方开源库的吐槽和备忘》中作者ibireme列举了国内多款知名应用所使用的开源框架,并对其中一些框架进行了分析,同样国外开发者
@iOSCowboy也在博客中给我们列出了国外多款知名应用使用的开源框架。另外txx's blog中详细介绍了
Facebook Paper使用的第三
- Objective-c单例模式的正确写法
jsntghf
单例iosiPhone
一般情况下,可能我们写的单例模式是这样的:
#import <Foundation/Foundation.h>
@interface Downloader : NSObject
+ (instancetype)sharedDownloader;
@end
#import "Downloader.h"
@implementation
- jquery easyui datagrid 加载成功,选中某一行
hae
jqueryeasyuidatagrid数据加载
1.首先你需要设置datagrid的onLoadSuccess
$(
'#dg'
).datagrid({onLoadSuccess :
function
(data){
$(
'#dg'
).datagrid(
'selectRow'
,3);
}});
2.onL
- jQuery用户数字打分评价效果
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/5.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>jQuery用户数字打分评分代码 - HoverTree</
- mybatis的paramType
kerryg
DAOsql
MyBatis传多个参数:
1、采用#{0},#{1}获得参数:
Dao层函数方法:
public User selectUser(String name,String area);
对应的Mapper.xml
<select id="selectUser" result
- centos 7安装mysql5.5
MrLee23
centos
首先centos7 已经不支持mysql,因为收费了你懂得,所以内部集成了mariadb,而安装mysql的话会和mariadb的文件冲突,所以需要先卸载掉mariadb,以下为卸载mariadb,安装mysql的步骤。
#列出所有被安装的rpm package rpm -qa | grep mariadb
#卸载
rpm -e mariadb-libs-5.
- 利用thrift来实现消息群发
qifeifei
thrift
Thrift项目一般用来做内部项目接偶用的,还有能跨不同语言的功能,非常方便,一般前端系统和后台server线上都是3个节点,然后前端通过获取client来访问后台server,那么如果是多太server,就是有一个负载均衡的方法,然后最后访问其中一个节点。那么换个思路,能不能发送给所有节点的server呢,如果能就
- 实现一个sizeof获取Java对象大小
teasp
javaHotSpot内存对象大小sizeof
由于Java的设计者不想让程序员管理和了解内存的使用,我们想要知道一个对象在内存中的大小变得比较困难了。本文提供了可以获取对象的大小的方法,但是由于各个虚拟机在内存使用上可能存在不同,因此该方法不能在各虚拟机上都适用,而是仅在hotspot 32位虚拟机上,或者其它内存管理方式与hotspot 32位虚拟机相同的虚拟机上 适用。
- SVN错误及处理
xiangqian0505
SVN提交文件时服务器强行关闭
在SVN服务控制台打开资源库“SVN无法读取current” ---摘自网络 写道 SVN无法读取current修复方法 Can't read file : End of file found
文件:repository/db/txn_current、repository/db/current
其中current记录当前最新版本号,txn_current记录版本库中版本