- 【RAG系列】知识加工的艺术 - 文档预处理实战手册
什么都想学的阿超
原理概念#深度学习深度学习RAG人工智能
知识加工的艺术-文档预处理实战手册原始文档文档拆分结构化数据非结构化数据表格处理器文本分割器格式化CSV语义分块知识图谱一、文本拆分的积木法则1.1机械分割vs语义理解固定窗口上下文感知段落拆分...模型参数量达到175B时...语义拆分模型参数量......175B时表现分割策略对比方法优点缺点代码示例固定窗口O(1)时间复杂度割裂技术术语text.split("\n\n")滑动窗口保留局部上下
- 深度、机器学习算法
yzx991013
机器学习算法人工智能
机器学习典型算法SVM(支持向量机):它通过寻找一个最优超平面来对数据进行分类。在二分类问题中,能找到一个平面(低维)或超平面(高维),使不同类别的数据点尽可能远地分布在超平面两侧。在小样本、非线性数据处理上有优势,常用于文本分类、图像识别等领域。决策树:以树形结构展示决策过程,从根节点开始,依据特征值逐步向下划分,直到叶子节点得出分类或回归结果。它易于理解和解释,可处理数值型和分类型数据,但容易
- SOME/IP-SD -- 协议英文原文讲解1
忆源
SOME/IP-SDtcp/ip网络网络协议
前言SOME/IP协议越来越多的用于汽车电子行业中,关于协议详细完全的中文资料却没有,所以我将结合工作经验并对照英文原版协议做一系列的文章。基本分三大块:1.SOME/IP协议讲解2.SOME/IP-SD协议讲解3.python/C++举例调试讲解1IntroductionandoverviewThisprotocolspecificationspecifiestheformat,messages
- SOME/IP--协议英文原文讲解1
忆源
SOME/IPAUTOSAR网络
前言SOME/IP协议越来越多的用于汽车电子行业中,关于协议详细完全的中文资料却没有,所以我将结合工作经验并对照英文原版协议做一系列的文章。基本分三大块:1.SOME/IP协议讲解2.SOME/IP-SD协议讲解3.python/C++举例调试讲解一、SOME/IP由来及协议下载1.历史SOME/IP(Scalableservice-OrientedMiddlewarEoverIP)是由宝马的La
- 深度求索:解析DeepSeek R1与V3模型的技术差异
walkskyer
AI探索deepseekdeepseek-r1deepseek-v3
深度求索:解析DeepSeekR1与V3模型的技术差异引言模型定位与核心能力DeepSeekV3应用场景及示例DeepSeekR1应用场景及示例模型架构与训练方法DeepSeekV3的架构特点DeepSeekR1的强化学习策略性能表现与基准测试DeepSeekV3的性能优势领域DeepSeekR1的性能优势领域应用场景与部署成本分析DeepSeekV3的适用场景及部署成本优势DeepSeekR1的
- yolov5转onnx模型,onnx转rknn模型部署在rk3588平台上
wtqpshhh
YOLOpython
安装python等环境,以及相关依赖库,然后克隆YOLOv5仓库的源码。#安装anaconda参考前面环境搭建教程,然后使用conda命令创建环境condacreate-nyolov5python=3.9condaactivateyolov5#拉取最新的yolov5(教程测试时是v7.0),可以指定下版本分支#gitclonehttps://github.com/ultralytics/yolov
- Python入门教程丨3.5 正则表达式
凌小添
Python教程python正则表达式mysql
今天我们来学习Python里超实用的字符串匹配和正则表达式。这是处理文本数据的神器,无论是爬虫、数据清洗还是文本分析,都离不开它,我们从基础语法讲起,再到实战场景,深入体会正则的妙用。1.re库正则表达式(RegularExpression,简称regex或regexp)是一种用来匹配字符串的强大工具。它由一串字符和特殊符号组成,用于描述或匹配一系列符合某种模式的字符串。正则表达式广泛应用于文本搜
- pythonmatplotlib绘图小提琴,Matplotlib提琴图
极品小神蛋
本篇文章帮大家学习Matplotlib提琴图,包含了Matplotlib提琴图使用方法、操作技巧、实例演示和注意事项,有一定的学习价值,大家可以用来参考。小提琴图类似于箱形图,除了它们还显示不同值的数据的概率密度。这些图包括数据中位数的标记和表示四分位数范围的框,如标准框图中所示。在该箱图上叠加的是核密度估计。与箱形图一样,小提琴图用于表示跨不同“类别”的可变分布(或样本分布)的比较。小提琴图形比
- pythonmatplotlib绘图小提琴_Matplotlib提琴图
weixin_39797393
小提琴图类似于箱形图,除了它们还显示不同值的数据的概率密度。这些图包括数据中位数的标记和表示四分位数范围的框,如标准框图中所示。在该箱图上叠加的是核密度估计。与箱形图一样,小提琴图用于表示跨不同“类别”的可变分布(或样本分布)的比较。小提琴图形比普通图形更具信息性。事实上,虽然箱形图仅显示平均值/中位数和四分位数范围等汇总统计量,但小提琴图显示了数据的完整分布。importmatplotlib.p
- 如何在 Hugging Face 上下载和使用模型—全面指南
Hello.Reader
人工智能python语言运维人工智能机器学习ai
1.引言在自然语言处理(NLP)领域,HuggingFace已成为一个不可忽视的平台。无论你是从事学术研究还是在工业中应用NLP技术,HuggingFace都为你提供了丰富的预训练模型和工具库,这些资源大大加速了NLP任务的开发和部署。HuggingFace提供的模型库涵盖了从文本分类到文本生成、从机器翻译到问答系统等各种NLP任务。这些模型大多是由社区贡献并经过大规模数据训练的,使用它们可以帮助
- 目前,本调查体系覆盖23000个农户、360个行政村,样本分布在全国除香港、澳门、台湾以外的31个省(自治区、直辖市)。农村固定观察点调查体系的基本任务是:通过对固定不变的村和户进行长期跟踪调查,取得
甜橙微醺
python数据挖掘经验分享pandas数据库
目前,本调查体系覆盖23000个农户、360个行政村,样本分布在全国除香港、澳门、台湾以外的31个省(自治区、直辖市)。农村固定观察点调查体系的基本任务是:通过对固定不变的村和户进行长期跟踪调查,取得连续数据,通过对农村基层各种动态信息的及时了解,取得系统周密的资料,进而对农村经济社会发展进行综合分析,为研究农村问题、制定农村政策提供依据。农固数据86-17年,分为基础版&升级版,具体数据问题可私
- 46-3 护网溯源 - 溯源报告编写
技术探索
Web安全攻防全解析网络安全web安全
格式1.基本情况︰钓鱼邮件情况介绍在这部分,需要详细描述钓鱼邮件的基本情况,包括收到的邮件内容、寄件人信息、邮件附件或链接等。还需说明收到邮件的时间和频率。2.行为分析详细阐述攻击者的行为模式和攻击方式,包括攻击手段、使用的恶意工具或技术,以及可能的入侵路径。需要对攻击过程进行深入分析,包括攻击者的目的和策略等。3.样本分析进行手工分析,详细描述样本的特征和行为,包括恶意代码的功能、传播方式、对系
- 朴素贝叶斯原理及sklearn中代码实战
Lewis@
sklearn概率论机器学习
朴素贝叶斯(NaiveBayes)是一类基于贝叶斯定理的简单而有效的分类算法。它假设特征之间是相互独立的,即在给定目标变量的情况下,每个特征都不依赖于其他特征。尽管这个假设在实际中很难成立,朴素贝叶斯在许多场景下仍表现得非常好,特别是对于文本分类等高维数据的应用。1.贝叶斯定理贝叶斯定理表明给定一个事件发生的条件下另一个事件发生的概率:P(A∣B)=P(B∣A)⋅P(A)P(B){P(A|B)=\
- 【Python数据分析五十个小案例】使用自然语言处理(NLP)技术分析 Twitter 情感
小馒头学python
python数据分析自然语言处理
博客主页:小馒头学python本文专栏:Python爬虫五十个小案例专栏简介:分享五十个Python爬虫小案例项目简介什么是情感分析情感分析(SentimentAnalysis)是文本分析的一部分,旨在识别文本中传递的情感信息,例如正面、负面或中立情绪。为什么选择Twitter数据数据丰富:Twitter上每天产生数百万条推文,内容多样。即时性:适合实时分析。公开可用:提供API可轻松访问。NLP
- 人工智能训练师如何做文本数据标注?
小宝哥Code
人工智能训练师人工智能
在人工智能训练中,文本数据标注是非常重要的一个环节。文本数据标注是对数据进行结构化、分类、分词、情感分析、命名实体识别(NER)等操作,为机器学习模型提供准确的输入。以下是常见的文本数据标注任务和对应的Python代码示例。1.文本分类标注文本分类标注是对文本数据进行分类的任务。通常我们会将文本数据标注为不同的类别,比如“体育”、“娱乐”、“政治”等。示例:假设我们有一组新闻文本,我们需要为其分配
- 神经网络模型训练中的相关概念:Epoch,Batch,Batch size,Iteration
一杯水果茶!
视觉与网络神经网络batchepochIteration
神经网络模型训练中的相关概念如下:Epoch(时期/回合):当一个完整的数据集通过了神经网络一次并且返回了一次,这个过程称为一次epoch。也就是说,所有训练样本在神经网络中都进行了一次正向传播和一次反向传播。一个epoch是将所有训练样本训练一次的过程。Batch(批/一批样本):将整个训练样本分成若干个batch。每个batch中包含一部分训练样本,每次送入网络中进行训练的是一个batch。B
- 机器学习(一) 本文(3万字) | 机器学习概述 |
小酒馆燃着灯
机器学习人工智能深度学习目标检测vscodepytorchpython
推荐阅读,点击查看文章目录1.统计学习(机器学习)1.1特点1.2对象1.3目的1.4方法1.5步骤2.基本分类2.1监督学习2.1.1输入空间、特征空间和输出空间2.1.2概率分布2.1.3假设空间2.1.4问题的形式化2.2无监督学习2.3强化学习2.4半监督学习与主动学习3.基于模型分类4.基于技巧分类4.1贝叶斯学习4.2核方法5.统计学习三要素5.1模型5.2策略5.2.1损失函数与风险
- 使用 AnyscaleEmbeddings 进行文本嵌入
dgay_hua
python
在自然语言处理(NLP)领域中,嵌入(Embedding)是一种将文本转换为向量表示的方法。今天,我们将通过AnyscaleEmbeddings类来演示如何进行文本嵌入,它能有效地将文本转换为高维向量,这在文本相似度计算、文本分类等任务中非常有用。1.技术背景介绍嵌入模型是NLP中的一种常见技术,它能够将语言数据映射为固定长度的高维向量。通过预训练模型(如BERT、GPT等),我们可以获得语义丰富
- Python库 - transformers
司南锤
PYTHON库python机器学习python开发语言
transformers库是由HuggingFace开发的一个非常流行的Python库,用于自然语言处理(NLP)任务。它提供了大量的预训练模型,这些模型可以用于各种NLP任务,如文本分类、问答、翻译、摘要生成等。以下是关于transformers库的详细介绍:1.主要特点预训练模型:transformers库包含了多种预训练的语言模型,如BERT、GPT、T5、XLNet等。这些模型在大规模文本
- Jieba分词算法应用
C嘎嘎嵌入式开发
算法服务器数据库c++linux
1.Jieba分词算法简介Jieba是一个用于中文分词的Python库,其核心思想是基于词典和统计模型来进行分词。由于中文文本中没有明显的单词边界,因此分词是中文处理中的一个重要任务。Jieba提供了以下几种主要的分词模式:精确模式:尽可能准确地切分句子,适合用于文本分析。全模式:将句子中所有可能的词语都切分出来,适合用于搜索引擎。搜索引擎模式:在精确模式的基础上,对长词再次切分,适合用于搜索引擎
- 探秘 DeepSeek R1 模型:跨越多领域的科技奇迹,引领智能应用新浪潮
羑悻的小杀马特.
AI学习科技deepseekAI大模型
DeepSeekR1模型功能强大,应用广泛。在自然语言处理、计算机视觉、推荐系统和医疗等领域都能发挥作用。本文介绍了其在各领域的应用场景和代码示例,助你深入了解它。目录编辑一、本篇背景:二、DeepSeekR1模型概述:2.1模型特点:2.2技术原理:三、自然语言处理领域的应用:3.1文本分类:3.1.1应用场景:3.1.2代码演示:3.2情感分析:3.2.1应用场景:3.2.2代码演示:3.3机
- 朴素贝叶斯模型在文本分类中的应用
Ash Butterfield
nlp分类数据挖掘人工智能
朴素贝叶斯(NaiveBayes)是一种基于贝叶斯定理的概率分类算法,广泛应用于文本分类任务中。它的核心思想是根据训练数据中不同类别的条件概率,预测新文本属于哪个类别。尽管其假设条件较为简单(假设特征之间相互独立),但朴素贝叶斯在许多实际应用中仍表现出色,特别是在处理文本分类任务时。本文将介绍朴素贝叶斯模型的基本原理、在文本分类中的应用以及其优缺点,并通过示例说明其具体实现。1.朴素贝叶斯模型的基
- 第N5周:Pytorch文本分类入门
计算机真好丸
pytorch分类人工智能
文章目录一、前期准备1.环境安装2.加载数据3.构建词典4.生成数据批次和迭代器二、准备模型1.定义模型2.定义实例三、训练模型1.拆分数据集并运行模型2.使用测试数据集评估模型本文为365天深度学习训练营中的学习记录博客原作者:K同学啊一、前期准备1.环境安装确保安装了torchtext与portalocker库2.加载数据importtorch#强制使用CPUdevice=torch.devi
- 第TR5周:Transformer实战:文本分类
计算机真好丸
transformer分类深度学习
文章目录1.准备环境1.1环境安装1.2加载数据2.数据预处理2.1构建词典2.2生成数据批次和迭代器2.3构建数据集3.模型构建3.1定义位置编码函数3.2定义Transformer模型3.3初始化模型3.4定义训练函数3.5定义评估函数4.训练模型4.1模型训练5.总结:本文为365天深度学习训练营中的学习记录博客原作者:K同学啊1.准备环境1.1环境安装这是一个使用PyTorch通过Tran
- nlp技术
tqs_12345
人工智能自然语言处理
自然语言处理(NaturalLanguageProcessing,NLP)技术是一种计算机科学与人工智能的交叉领域,涉及机器对人类语言进行处理和理解的能力。以下是一些常见的NLP技术的示例:1.机器翻译:NLP技术可以帮助机器将一种语言翻译成另一种语言。例如,谷歌翻译使用NLP技术实现自动翻译,用户可以输入一段文本,然后谷歌翻译会自动将其翻译成其他语言。2.文本分类:NLP技术可以将文本分类到不同
- 深入了解 Oracle 正则表达式
一只fish
oracle数据库
目录深入了解Oracle正则表达式一、正则表达式基础概念二、Oracle正则表达式语法(一)字符类(二)重复限定符(三)边界匹配符(四)分组和捕获三、Oracle正则表达式函数(一)REGEXP\_LIKE函数(二)REGEXP\_REPLACE函数(三)REGEXP\_SUBSTR函数四、实际应用场景(一)数据清洗(二)数据验证(三)文本分析五、注意事项六、总结深入了解Oracle正则表达式一、
- 使用OpenAI API进行文本分类标注
dgay_hua
人工智能python
技术背景介绍文本分类标注(Tagging)是一种非常有用的技术,可以对文档进行分类,例如情感分析、语言检测、风格判断、主题识别等。这项技术在自然语言处理(NLP)领域中有广泛的应用,例如社交媒体监控、客户反馈分析和自动化客服系统等。在本文中,我们将使用OpenAI的API,通过LangChain工具来进行文本分类标注。我们将展示如何定义分类函数和模式(schema),并通过实际代码演示实现文本分类
- 利用Infinity Embeddings创建文本嵌入
qahaj
python
技术背景介绍在自然语言处理(NLP)任务中,文本嵌入是一种将文本数据转换成固定维度向量的技术。这些向量能够捕捉文本之间的语义关系,使得在后续的任务(如文本分类、相似度计算等)中非常实用。Infinity嵌入模型是一种能够方便创建高质量文本嵌入的现代工具。核心原理解析InfinityEmbeddings利用强大的预训练模型,通过对输入的文本数据进行编码,生成具有语义意义的高维向量。这个过程不仅仅是简
- python电商数据挖掘_Python 爬取淘宝商品数据挖掘分析实战
weixin_39946996
python电商数据挖掘
作者孙方辉本文为CDA志愿者投稿作品,转载需授权项目内容本案例选择>>商品类目:沙发;数量:共100页4400个商品;筛选条件:天猫、销量从高到低、价格500元以上。项目目的1.对商品标题进行文本分析词云可视化2.不同关键词word对应的sales的统计分析3.商品的价格分布情况分析4.商品的销量分布情况分析5.不同价格区间的商品的平均销量分布6.商品价格对销量的影响分析7.商品价格对销售额的影响
- 【Elasticsearch】文本分析Text analysis概述
risc123456
Elasticsearchelasticsearch
文本分析概述文本分析使Elasticsearch能够执行全文搜索,搜索结果会返回所有相关的结果,而不仅仅是完全匹配的结果。如果你搜索“Quickfoxjumps”,你可能希望找到包含“Aquickbrownfoxjumpsoverthelazydog”的文档,你也可能希望找到包含相关词汇(如“fastfox”或“foxesleap”)的文档。分析通过分词实现全文搜索:将文本分解成更小的单元,称为词
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =