sql查询
import pymysql
import pandas as pd
user = ''
password = ''
dbName = ''
dbHost = ''
dbPort = 8888
con = pymysql.connect(
host=dbHost,
port=dbPort,
user=user,
password=password,
database=dbName,
charset='utf8')
cursor = con.cursor()
head = ["Id", "Url"]
t0, t1, name = '', '', ''
sql_select = "SELECT id, Url " \
"FROM xxx " \
"WHERE createTime >= ('{}') and createTime <= ('{}') and name = ('{}')".format(t0, t1, name)
cursor.execute(sql_select)
cds = cursor.fetchall()
df = pd.DataFrame(cds)
cursor.close()
con.close()
日志功能
import logging
import os
if os.path.exists('log_retry.log'):
os.remove('log_retry.log')
logging.basicConfig(level=logging.INFO,
format='%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s',
datefmt='%a, %d %b %Y %H:%M:%S',
filename='log_retry.log',
filemode='w')
count = 0
try:
logging.info('############# TOTAL number ############:{}, '.format(count))
except:
logging.error()
kafka传输
from kafka import KafkaProducer
import json
def kfk_send(msg):
kafka_topic = ''
kafka_bootstrap_servers = ['172.25.214.75:9092', '172.25.214.76:9092', '172.25.214.78:9092']
producer = KafkaProducer(bootstrap_servers=kafka_bootstrap_servers,
value_serializer=lambda v: json.dumps(v).encode('utf-8'))
producer.send(kafka_topic, value=msg)
producer.flush()
head = []
value = []
ndata = dict(zip(head, value))
kfk_send(ndata)
flask服务,异步执行(服务及时返回+耗时任务),使用线程池
from concurrent.futures import ThreadPoolExecutor
from flask import Flask, request
import json
from time import sleep
executor = ThreadPoolExecutor(max_workers=4)
app = Flask(__name__)
def task(p1, p2):
print("Hello")
@app.route("/", methods=["POST"])
def main():
request_dict = json.loads(request.data)
p1 = request_dict["p1"]
p2 = request_dict["p2"]
executor.submit(task, p1, p2)
sleep(3)
return "Get your POST!!!"
if __name__ == '__main__':
app.run()
python多进程
from multiprocessing import Process
def infer(i, filelist):
print(i, filelist)
if __name__ == '__main__':
img_list = []
num_process = 5
num = int(len(img_list) / num_process)
process_list = []
for i in range(num_process):
filelist = img_list[i * num:(i + 1) * num]
if i == num_process - 1:
filelist = img_list[i * num:]
process_list.append(Process(target=infer, args=(i, filelist)))
[p.start() for p in process_list]
[p.join() for p in process_list]