2-归并排序

算法:归并排序
思想:分治法【问题分解,归并排序递归解决,合并解】
实现:将数组通过递归方式自顶向下的分解至最小单元,再自底向上进行合并,以此实现排序
时间复杂度: Θ ( n l g n ) \Theta(nlgn) Θ(nlgn)

import math

def merge(nums, p, q, r): #用于将两个已排序好的数组合到一起;合并函数调用次数:n-1
    print([p, q, r], nums[p:q], nums[q:r])
    left = nums[p:q]
    right = nums[q:r]
    left.append(float('inf')) #极大值作为哨兵-简化代码
    right.append(float('inf'))
    i, j = 0, 0
    for k in range(p, r):
        if left[i] <= right[j]:
            nums[k] = left[i]
            i += 1
        else:
            nums[k] = right[j]
            j += 1
    print(nums, '\n')

def merge_sort(nums, p, r):
    if r - p > 1:  # 当为1时,表明数组为最小单元,即数组中仅有一个元素,已排序好了
        q = math.floor((p + r) / 2) #划分索引
        merge_sort(nums, p, q)
        merge_sort(nums, q, r)
        merge(nums, p, q, r)


if __name__ == '__main__':
    nums = [5, 2, 7, 4, 1, 3, 2, 6]
    merge_sort(nums, 0, len(nums))  # 随意指定数组起始和终止索引
    print(nums)

print值:

[0, 1, 2] [5] [2]
[2, 5, 7, 4, 1, 3, 2, 6] 

[2, 3, 4] [7] [4]
[2, 5, 4, 7, 1, 3, 2, 6] 

[0, 2, 4] [2, 5] [4, 7]
[2, 4, 5, 7, 1, 3, 2, 6] 

[4, 5, 6] [1] [3]
[2, 4, 5, 7, 1, 3, 2, 6] 

[6, 7, 8] [2] [6]
[2, 4, 5, 7, 1, 3, 2, 6] 

[4, 6, 8] [1, 3] [2, 6]
[2, 4, 5, 7, 1, 2, 3, 6] 

[0, 4, 8] [2, 4, 5, 7] [1, 2, 3, 6]
[1, 2, 2, 3, 4, 5, 6, 7] 

[1, 2, 2, 3, 4, 5, 6, 7]

你可能感兴趣的:(算法导论,排序算法,算法,数据结构)