用 Python 实现一个 A/B 测试!

以下文章来源于法纳斯特,作者小F

A/B 测试,通过分析两种不同的营销策略,以此来选择最佳的营销策略,可以高效地将流量转化为销售额(或转化为你的预期目标)

有助于找到更好的方法来寻找客户、营销产品、扩大影响范围或将目标客户转化为实际客户

用 Python 实现一个 A/B 测试!_第1张图片

A/B 测试是每个学习数据分析同学,都应该知道且去学习的概念

/ 01 / AB测试

举个例子,我在短视频 App 上购买流量推广我的视频(挂小黄车买课程),一共推了两次,其中两次的目标受众各不相同

在分析了两次活动的结果后,我可能倾向于选择第二次的活动目标受众,因为它比第一次活动能够带来更好的销售额或涨粉或播放量

用 Python 实现一个 A/B 测试!_第2张图片

我们的目标可以是提高销售额、粉丝数或流量等等

当我们根据以前的营销活动结果选择最佳的营销策略时,这就是 A/B 测试

本次使用的数据集是开源数据集,İLKER YILDIZ在Kaggle上提交的A/B测试的数据集

下面是数据集中的所有特征:

1. Campaign Name: 活动名称

2. Date: 记录日期

3. Spend: 活动花费(单位:美元)

4. of Impressions: 广告在整个活动中的展示次数

5. Reach: 广告在整个活动中的展示人数(唯一)

6. of Website Clicks: 通过广告获得的网站点击次数

7. of Searches: 在网站上执行搜索的用户数量

8. of View Content: 查看网站内容产品的用户数量

9. of Add to Cart: 将产品添加到购物车的用户数量

10. of Purchase: 购买次数

一共是进行了两种类型的宣传营销活动:

1. Control Campaign: 对照活动

2. Test Campaign: 测试活动

通过执行A/B测试找到最适合的营销策略,以此来吸引获得更多的客户。

下面小F就带大家一起来学习下

/ 02 / 使用Python进行AB测试

先安装相关的Python可视化库plotly,在使用的时候发现报错,所以还要安装statsmodels库。

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple statsmodels
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple plotly

然后导入Python库,读取两种活动的数据文件。

import pandas as pd
import datetime
from datetime import date, timedelta
import plotly.graph_objects as go
import plotly.express as px
import plotly.io as pio
pio.templates.default = "plotly_white"


# 设置value的显示长度为200,默认为50
pd.set_option('max_colwidth', 300)
# 显示所有列,把行显示设置成最大
pd.set_option('display.max_columns', None)
# 显示所有行,把列显示设置成最大
pd.set_option('display.max_rows', None)

# 加载数据
control_data = pd.read_csv("control_group.csv", sep=";")
test_data = pd.read_csv("test_group.csv", sep=";")

来看看这两个数据集的情况。

# 打印对照活动数据
print(control_data.head())

对照活动数据的情况如下。

用 Python 实现一个 A/B 测试!_第3张图片

打印测试活动数据。

# 打印测试活动数据
print(test_data.head())

测试活动数据的情况如下。

用 Python 实现一个 A/B 测试!_第4张图片

/ 03 / 数据准备

发现数据集的列名不太规范,所以对列名进行修改。

# 更改列名
control_data.columns = ["Campaign Name", "Date", "Amount Spent",
                        "Number of Impressions", "Reach", "Website Clicks",
                        "Searches Received", "Content Viewed", "Added to Cart",
                        "Purchases"]

test_data.columns = ["Campaign Name", "Date", "Amount Spent",
                     "Number of Impressions", "Reach", "Website Clicks",
                     "Searches Received", "Content Viewed", "Added to Cart",
                     "Purchases"]

现在让我们看看数据集是否有空值。

# 查看空值
print(control_data.isnull().sum())
print(test_data.isnull().sum())

用 Python 实现一个 A/B 测试!_第5张图片

用 Python 实现一个 A/B 测试!_第6张图片

发现对照活动的数据集有数据缺失,可以用每列的平均值来填充这些缺失值。

# 数据清洗
control_data["Number of Impressions"].fillna(value=control_data["Number of Impressions"].mean(),
                                             inplace=True)
control_data["Reach"].fillna(value=control_data["Reach"].mean(),
                             inplace=True)
control_data["Website Clicks"].fillna(value=control_data["Website Clicks"].mean(),
                                      inplace=True)
control_data["Searches Received"].fillna(value=control_data["Searches Received"].mean(),
                                         inplace=True)
control_data["Content Viewed"].fillna(value=control_data["Content Viewed"].mean(),
                                      inplace=True)
control_data["Added to Cart"].fillna(value=control_data["Added to Cart"].mean(),
                                     inplace=True)
control_data["Purchases"].fillna(value=control_data["Purchases"].mean(),
                                 inplace=True)

通过合并两个数据集来创建一个新的数据集。

# 合并数据
ab_data = control_data.merge(test_data,
                             how="outer").sort_values(["Date"])
ab_data = ab_data.reset_index(drop=True)
print(ab_data.head())

用 Python 实现一个 A/B 测试!_第7张图片

查看数据集中,两种活动的样本数量是否相同。

# 类型计数
print(ab_data["Campaign Name"].value_counts())

可以看出,每种活动都有30个样本数据,满足样本均衡的条件。

/ 04 / AB测试找到最佳营销策略

01 展示次数-活动花费

首先分析两种活动中「展示次数」和「活动花费」之间的关系。

figure = px.scatter(data_frame = ab_data, 
                    x="Number of Impressions",
                    y="Amount Spent", 
                    size="Amount Spent", 
                    color= "Campaign Name", 
                    trendline="ols")
figure.show()

用 Python 实现一个 A/B 测试!_第8张图片

发现在花费相同的情况下,「对照活动」的展示次数更多。

02 搜索量

两种类型活动的网站总搜索量对比。

label = ["Total Searches from Control Campaign",
         "Total Searches from Test Campaign"]
counts = [sum(control_data["Searches Received"]),
          sum(test_data["Searches Received"])]
colors = ['gold', 'lightgreen']
fig = go.Figure(data=[go.Pie(labels=label, values=counts)])
fig.update_layout(title_text='Control Vs Test: Searches')
fig.update_traces(hoverinfo='label+percent', textinfo='value',
                  textfont_size=30,
                  marker=dict(colors=colors,
                              line=dict(color='black', width=3)))
fig.show()

用 Python 实现一个 A/B 测试!_第9张图片

在网站的搜索量上,「测试活动」略多于对照活动。

03 点击量

两种类型活动的网站总点击量对比。

label = ["Website Clicks from Control Campaign",
         "Website Clicks from Test Campaign"]
counts = [sum(control_data["Website Clicks"]),
          sum(test_data["Website Clicks"])]
colors = ['gold', 'lightgreen']
fig = go.Figure(data=[go.Pie(labels=label, values=counts)])
fig.update_layout(title_text='Control Vs Test: Website Clicks')
fig.update_traces(hoverinfo='label+percent', textinfo='value',
                  textfont_size=30,
                  marker=dict(colors=colors,
                              line=dict(color='black', width=3)))
fig.show()

用 Python 实现一个 A/B 测试!_第10张图片

在网站的点击量上,「测试活动」略多于对照活动。

04 内容产品查看量

两种类型活动的网站内容和产品的查看量对比。

label = ["Content Viewed from Control Campaign",
         "Content Viewed from Test Campaign"]
counts = [sum(control_data["Content Viewed"]),
          sum(test_data["Content Viewed"])]
colors = ['gold', 'lightgreen']
fig = go.Figure(data=[go.Pie(labels=label, values=counts)])
fig.update_layout(title_text='Control Vs Test: Content Viewed')
fig.update_traces(hoverinfo='label+percent', textinfo='value',
                  textfont_size=30,
                  marker=dict(colors=colors,
                              line=dict(color='black', width=3)))
fig.show()

用 Python 实现一个 A/B 测试!_第11张图片

可以看出「对照活动」的内容产品查看量比测试活动多。

虽然差距不是很大,但是由于对照活动的网站点击率相对较低,这便意味着**「对照活动」**的用户参与度(粘性)高于测试活动。

05 加购物车量

两种类型活动,将产品添加到购物车的数量。

label = ["Products Added to Cart from Control Campaign", 
         "Products Added to Cart from Test Campaign"]
counts = [sum(control_data["Added to Cart"]), 
          sum(test_data["Added to Cart"])]
colors = ['gold','lightgreen']
fig = go.Figure(data=[go.Pie(labels=label, values=counts)])
fig.update_layout(title_text='Control Vs Test: Added to Cart')
fig.update_traces(hoverinfo='label+percent', textinfo='value', 
                  textfont_size=30,
                  marker=dict(colors=colors, 
                              line=dict(color='black', width=3)))
fig.show()

用 Python 实现一个 A/B 测试!_第12张图片

尽管「对照活动」的点击率相对较低,但是却有更多的产品被添加到购物车中。

06 活动花费

两种类型的活动花费对比。

label = ["Amount Spent in Control Campaign", 
         "Amount Spent in Test Campaign"]
counts = [sum(control_data["Amount Spent"]), 
          sum(test_data["Amount Spent"])]
colors = ['gold','lightgreen']
fig = go.Figure(data=[go.Pie(labels=label, values=counts)])
fig.update_layout(title_text='Control Vs Test: Amount Spent')
fig.update_traces(hoverinfo='label+percent', textinfo='value', 
                  textfont_size=30,
                  marker=dict(colors=colors, 
                              line=dict(color='black', width=3)))
fig.show()

用 Python 实现一个 A/B 测试!_第13张图片

在测试活动上的花费要高于对照活动。

基于上面的分析,对照活动带来了更多的内容浏览量和产品添加到购物车,**「对照活动」**比测试活动更有效。

07 销售额

两种类型活动的销售情况对比。

label = ["Purchases Made by Control Campaign", 
         "Purchases Made by Test Campaign"]
counts = [sum(control_data["Purchases"]), 
          sum(test_data["Purchases"])]
colors = ['gold','lightgreen']
fig = go.Figure(data=[go.Pie(labels=label, values=counts)])
fig.update_layout(title_text='Control Vs Test: Purchases')
fig.update_traces(hoverinfo='label+percent', textinfo='value', 
                  textfont_size=30,
                  marker=dict(colors=colors, 
                              line=dict(color='black', width=3)))
fig.show()

用 Python 实现一个 A/B 测试!_第14张图片

在这两种广告活动当中,消费者的购买量仅相差1%左右。

由于对照活动能以更少的营销支出获得了更多的销售,所以在营销策略上,我们可以选择对照活动类型。

最后让我们分析其它指标,看看哪种广告活动的转化率更高。

08 内容产品查看量和点击量

两种类型活动网站内容查看和点击量的关系。

figure = px.scatter(data_frame=ab_data,
                    x="Content Viewed",
                    y="Website Clicks",
                    size="Website Clicks",
                    color="Campaign Name",
                    trendline="ols")
figure.show()

用 Python 实现一个 A/B 测试!_第15张图片

在测试活动中,虽然网站点击率高,但是内容查看量少,所以优先选择「对照活动」。

09 内容产品查看量和添加购物车

分析网站内容查看和添加购物车之间的关系。

figure = px.scatter(data_frame=ab_data,
                    x="Added to Cart",
                    y="Content Viewed",
                    size="Added to Cart",
                    color="Campaign Name",
                    trendline="ols")
figure.show()

用 Python 实现一个 A/B 测试!_第16张图片

再一次的,「对照活动」的效果还是很好,加入购物车的意向较高。

10 添加购物车和销售额

分析添加到购物车的产品数量和销售额之间的关系。

figure = px.scatter(data_frame=ab_data,
                    x="Purchases",
                    y="Added to Cart",
                    size="Purchases",
                    color="Campaign Name",
                    trendline="ols")
figure.show()

用 Python 实现一个 A/B 测试!_第17张图片

虽然对照活动带来了更多的加购物车行为,但「测试活动」的结算率会更高。

/ 05 / 结论

通过A/B测试,我们发现对照活动带来了更多的销售行为和访问者的参与。

用户会从对照活动中查看了更多的产品,使得购物车中有更多的产品和更多的销售额。

但在测试活动中,用户购物车产品的结算率会更高。

测试活动是根据内容查看和添加到购物车会有更多的销售。而对照活动则是整体销量的增加。

因此,测试活动可以用来向特定的受众推销特定的产品,而对照活动可以用来向更广泛的客户推销多种产品

以上就是“用 Python 实现一个 A/B 测试!”的全部内容,希望对你有所帮助。

关于Python技术储备

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

二、Python必备开发工具

img

三、Python视频合集

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

img

四、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

img

五、Python练习题

检查学习结果。

img

六、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

img

最后祝大家天天进步!!

上面这份完整版的Python全套学习资料已经上传至CSDN官方,朋友如果需要可以直接微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】。

你可能感兴趣的:(python,开发语言)