C++初阶之C++入门最全详解

C++入门

  • 1. C++关键字(C++98)
  • 2. 命名空间
    • 2.1 命名空间定义
    • 2.2 命名空间使用
  • 3. C++输入&输出
  • 4. 缺省参数
    • 4.1 缺省参数概念
    • 4.2 缺省参数分类
  • 5. 函数重载
    • 5.1 函数重载概念
      • 5.1.1 参数类型不同
      • 5.1.2 参数个数不同
      • 5.1.3 参数类型顺序不同
    • 5.2 C++支持函数重载的原理--名字修饰(name Mangling)
  • 6. 引用
    • 6.1 引用概念
    • 6.2 引用特性
    • 6.3 常引用
    • 6.4 使用场景
    • 6.5 传值、传引用效率比较
    • 6.6 引用和指针的区别
  • 7. 内联函数
    • 7.1 概念
    • 7.2 特性
  • 8. auto关键字(C++11)
    • 8.1 类型别名思考
    • 8.2 auto简介
    • 8.3 auto的使用细则
    • 8.3 auto不能推导的场景
  • 9. 基于范围的for循环(C++11)
    • 9.1 范围for的语法
    • 9.2 范围for的使用条件
  • 10. 指针空值nullptr(C++11)
    • 10.1 C++98中的指针空值
  • 11.C程序与C++程序的相互调用
    • 11.1 C++程序调用C程序
    • 11.2 C程序调用C++程序
  • 结语

1. C++关键字(C++98)

C++总计63个关键字,C语言32个关键字
C++初阶之C++入门最全详解_第1张图片

2. 命名空间

在C/C++中,变量、函数和后面要学到的类都是大量存在的,这些变量、函数和类的名称将都存
在于全局作用域中,可能会导致很多冲突。使用命名空间的目的是对标识符的名称进行本地化,
以避免命名冲突或名字污染,namespace关键字的出现就是针对这种问题的,我们看下面这段代码:

#include 
#include 
int rand = 10;
int main()
{
	printf("%d\n", rand);
	return 0;
}

我们在C语言中学过,因为rand是一个函数,所以不能使用rand作为变量名称,因此,这段代码编译会出现以下错误
在这里插入图片描述
C语言没办法解决类似这样的命名冲突问题,所以C++提出了namespace来解决

2.1 命名空间定义

定义命名空间,需要使用到namespace关键字,后面跟命名空间的名字,然后接一对{}即可,{}
中即为命名空间的成员。
例如:

namespace xiaoxie
{
 	int rand = 10;
 	int Add(int left, int right)
 	{
 		return left + right;
 	}
 	struct Node
 	{
 	struct Node* next;
 	int val;
 	};
}

xiaoxie是命名空间的名字,一般开发中是用项目名字做命名空间名。
命名空间中可以定义变量/函数/类型
命名空间还可以嵌套,如下:

//test.cpp
namespace N1
{
	int a;
	int b;
	int Add(int left, int right)
 	{
     	return left + right;
 	}
	namespace N2
 	{
     	int c;
     	int d;
     	int Sub(int left, int right)
     	{
         	return left - right;
     	}
 	}
}

同一个工程中允许存在多个相同名称的命名空间,编译器最后会合成同一个命名空间中。
一个工程中的test.h和上面test.cpp中两个N1会被合并成一个
例如:

// test.h
namespace N1
{
	int Mul(int left, int right)
 	{
     	return left * right;
 	}
}

注意:一个命名空间就定义了一个新的作用域,命名空间中的所有内容都局限于该命名空间中

2.2 命名空间使用

命名空间中成员该如何使用呢?比如:

namespace xiaoxie
{
 	int a = 0;
 	int b = 1;
 	int Add(int left, int right)
 	{
 		return left + right;
 	}
 	struct Node
 	{
 		struct Node* next;
 		int val;
 	};
}
int main()
{
 	printf("%d\n", a);
	return 0;
}

在C语言中我们在调用变量/函数/类型时是直接进行调用,但是在调用C++命名空间中的变量/函数/类型时,有以下3种方式:

1.加命名空间名称及作用域限定符

int main()
{
    printf("%d\n", xiaoxie::a);
    return 0;    
}

这种方式在每次调用命名空间中的变量/函数/类型时都要单独展开,是最繁琐的一种,也是最安全的一种方式。

2.使用using将命名空间中某个成员引入

using xiaoxie::b;
int main()
{
    printf("%d\n", xiaoxie::a);
    printf("%d\n", b);
    return 0;    
}

这种方式是展开该命名空间中某个变量/函数/类型,在后续调用该变量/函数/类型是可以直接使用而不用再次展开,这种方式是比较推荐的一种。

3.使用using namespace 命名空间名称引入

using namespce xiaoxie;
int main()
{
    printf("%d\n", xiaoxie::a);
    printf("%d\n", b);
    Add(10, 20);
    return 0;    
}

这种方式则是将命名空间中所有变量/函数/类型展开,后续使用该命名空间中的变量/函数/类型时,都可直接调用,但一般在项目中,不推荐这种写法,因为这样不安全。

3. C++输入&输出

我们先看看C++是如何输出hello world的

#include
using namespace std;
int main()
{
	cout<<"Hello world!!!"<<endl;
	return 0;
}

C++初阶之C++入门最全详解_第2张图片

std是C++标准库的命名空间名,C++将标准库的定义实现都放到这个命名空间中
说明:

  1. 使用cout标准输出对象(控制台)和cin标准输入对象(键盘)时,必须包含< iostream >头文件以及按命名空间使用方法使用std。
  2. cout和cin是全局的流对象,endl是特殊的C++符号,表示换行输出,他们都包含在包含< iostream >头文件中。
  3. <<是流插入运算符,>>是流提取运算符
  4. 使用C++输入输出更方便,不需要像printf/scanf输入输出时那样,需要手动控制格式。C++的输入输出可以自动识别变量类型
  5. 实际上cout和cin分别是ostream和istream类型的对象,>>和<<也涉及运算符重载等知识,后面我们还会更深入的学习IO流用法及原理。
    注意:早期标准库将所有功能在全局域中实现,声明在.h后缀的头文件中,使用时只需包含对应头文件即可,后来将其实现在std命名空间下,为了和C头文件区分,也为了正确使用命名空间,规定C++头文件不带.h;旧编译器(vc 6.0)中还支格式,后续编译器已不支持,因此推荐使用+std的方式。
#include 
using namespace std;
int main()
{
	int a;
	double b;
	char c;

	cin >> a;
	cin >> b >> c;

	cout << a << endl;
	cout << b << " " << c << endl;
	return 0;
}

C++初阶之C++入门最全详解_第3张图片
可以看出C++中的cin和cout可以自动识别变量的类型。关于cout和cin还有很多更复杂的用法,比如控制浮点数输出精度,控制整形输出进制格式等等。
std命名空间的使用惯例:
std是C++标准库的命名空间,如何展开std使用更合理呢?

  1. 在日常练习中,建议直接using namespace std即可,这样就很方便。
  2. using namespace std展开,标准库就全部暴露出来了,如果我们定义跟库重名的类型/对象/函数,就存在冲突问题。该问题在日常练习中很少出现,但是项目开发中代码较多、规模大,就很容易出现。所以建议在项目开发中使用,像std::cout这样使用时指定命名空间 + using std::cout展开常用的库对象/类型等方式。

4. 缺省参数

4.1 缺省参数概念

缺省参数是声明或定义函数时函数的参数指定一个缺省值。在调用该函数时,如果没有指定实参则采用该形参的缺省值,否则使用指定的实参。例如:

#include 
using namespace std;
void Func(int a = 0)
{
	cout << a << endl;
}
int main()
{
	Func();
	Func(10);
	return 0;
}

C++初阶之C++入门最全详解_第4张图片
没有传参时,使用参数的默认值,传参时,使用指定的实参。

4.2 缺省参数分类

全缺省参数

void Func(int a = 10, int b = 20, int c = 30)
 {
     cout<<"a = "<<a<<endl;
     cout<<"b = "<<b<<endl;
     cout<<"c = "<<c<<endl;
 }

半缺省参数

void Func(int a, int b = 10, int c = 20)
 {
     cout<<"a = "<<a<<endl;
     cout<<"b = "<<b<<endl;
     cout<<"c = "<<c<<endl;
 }

需要注意的是:

  1. 半缺省参数必须从右往左依次来给出,不能间隔着给
  2. 缺省参数不能在函数声明和定义中同时出现,如果生命与定义位置同时出现,恰巧两个位置提供的值不同,那编译器就无法确定到底该用那个缺省值,一般放在声明中
  3. 缺省值必须是常量或者全局变量
  4. C语言不支持(编译器不支持)

5. 函数重载

自然语言中,一个词可以有多重含义,人们可以通过上下文来判断该词真实的含义,即该词被重载了。

5.1 函数重载概念

函数重载:是函数的一种特殊情况,C++允许在同一作用域中声明几个功能类似的同名函数,这些同名函数的形参列表(参数个数 或 类型 或 类型顺序)不同,常用来处理实现功能类似数据类型不同的问题。在我们前面讲到的输入输出流cin和cout也是通过这种方式来实现自定识别类型的。

5.1.1 参数类型不同

int Add(int left, int right)
{
	cout << "int Add(int left, int right)" << endl;
	return left + right;
}
double Add(double left, double right)
{
	cout << "double Add(double left, double right)" << endl;
	return left + right;
}
int main()
{
	cout << Add(10, 20) << endl;
	cout << Add(10.1, 20.2) << endl;
	return 0;
}

在这里插入图片描述

5.1.2 参数个数不同

void f()
{
	cout << "f()" << endl;
}
void f(int a)
{
	cout << "f(int a)" << endl;
}
int main()
{
	f();
	f(10);
	return 0;
}

C++初阶之C++入门最全详解_第5张图片

5.1.3 参数类型顺序不同

void f(int a, char b)
{
	cout << "f(int a,char b)" << endl;
}
void f(char b, int a)
{
	cout << "f(char b, int a)" << endl;
}
int main()
{
	f(10, 'a');
	f('a', 10);
	return 0;
}

C++初阶之C++入门最全详解_第6张图片

5.2 C++支持函数重载的原理–名字修饰(name Mangling)

为什么C++支持函数重载,而C语言不支持函数重载呢?
在C/C++中,一个程序要运行起来,需要经历以下几个阶段:预处理、编译、汇编、链接
以下是GCC 的扩展编译流程概览
C++初阶之C++入门最全详解_第7张图片
首先是预编译阶段(.i)编译预处理指令,第二步编译(.s)进行语法分析、词法分析、语义分析、符号汇总,第三步汇编(.o)形成符号表,由汇编指令转为二进制指令,最后通过链接器完成链接。

实际项目通常是由多个头文件和多个源文件构成,在最后的链接阶段时,链接器会用哪个名字来找呢,在每个编译器中都有自己的函数名修饰规则, 由于Windows下vs的修饰规则过于复杂,而Linux下g++的修饰规则简单易懂,下面我们使用了g++演示了这个修饰后的名字我们先看下面的c程序

#include 
int add(int a, int b)
{
	return a + b;
}
int main()
{
	int a = 1;
	int b = 2;
	add(a, b);
	return 0;
}

C++初阶之C++入门最全详解_第8张图片

在C程序的汇编过程中,函数调用名称并没有进行改变,我们再看看C++程序

#include
using namespace std;
int Add(int left, int right)
{
	cout << "int Add(int left, int right)" << endl;
	return left + right;
}
double Add(double left, double right)
{
	cout << "double Add(double left, double right)" << endl;
	return left + right;
}
int main()
{
	cout << Add(10, 20) << endl;
	cout << Add(10.1, 20.2) << endl;
	return 0;
}

C++初阶之C++入门最全详解_第9张图片
C++初阶之C++入门最全详解_第10张图片
C++初阶之C++入门最全详解_第11张图片
结论:在linux下,采用g++编译完成后,函数名字的修饰发生改变,编译器将函数参数类型信息添加到修改后的名字中。通过这里就理解了C语言没办法支持重载,因为同名函数没办法区分。而C++是通过函数修饰规则来区分,只要参数不同,修饰出来的名字就不一样,就支持了重载。如果两个函数函数名和参数是一样的,返回值不同是不构成重载的,因为调用时编译器没办法区分。

6. 引用

6.1 引用概念

引用不是新定义一个变量,而是给已存在变量取了一个别名,编译器不会为引用变量开辟内存空
间,它和它引用的变量共用同一块内存空间。

注意:引用类型必须和引用实体是同种类型的

6.2 引用特性

  1. 引用在定义时必须初始化
  2. 一个变量可以有多个引用
  3. 引用一旦引用一个实体,再不能引用其他实体

比如下面这段代码注释部分的引用没有初始化,编译时就会发生错误,而下面两种引用则是正确的使用方法

#include
using namespace std;
void TestRef()
{
	int a = 10;
	// int& ra;   
	int& ra = a;
	int& rra = a;
	printf("%p %p %p\n", &a, &ra, &rra);
}
int main()
{
	TestRef();
	return 0;
}

C++初阶之C++入门最全详解_第12张图片

6.3 常引用

#include
using namespace std;
void TestConstRef()
{
	const int a = 10;
	//int& ra = a;   // 该语句编译时会出错,a为常量
	const int& ra = a;
	// int& b = 10; // 该语句编译时会出错,10为常量
	const int& b = 10;
	double d = 12.34;
	//int& rd = d; // 该语句编译时会出错,类型不同
	const int& rd = d;
	cout << a << " " << ra << " " << b << " " << d << " " << rd << endl;
	printf("%p\n%p\n%p\n%p\n%p\n", &a, &ra, &b, &d, &rd);
}
int main()
{
	TestConstRef();
	return 0;
}

C++初阶之C++入门最全详解_第13张图片

6.4 使用场景

1.做参数

#include
using namespace std;
void Swap(int& left, int& right)
{
	int temp = left;
	left = right;
	right = temp;
}
int main()
{
	int a = 1;
	int b = 2;
	cout << a << " " << b << endl;
	Swap(a, b);
	cout << a << " " << b << endl;
	return 0;
}

C++初阶之C++入门最全详解_第14张图片
2. 做返回值
首先我们要清楚传值返回的本质是生成一个返回对象的拷贝作为函数调用返回值
我们再来看传引用返回,先看下面的代码

#include
using namespace std;
int& Count()
{
	int n = 0;
	n++;
	return n;
}
int main()
{
	int& ret = Count();
	printf("%d\n", ret);
	printf("%d\n", ret);
	return 0;
}

C++初阶之C++入门最全详解_第15张图片
在这里ret的结果是未定义的,如果栈帧结束时,系统会清理栈帧置成随机值,所以第二趟的结果是随机值,第一趟的结果虽然是1,但是使用引用返回的本质是不对的,结果没有保障,所以我们得到一个结论:出了函数作用域,返回对象就销毁了,那么一定不能用引用返回,一定要用传值返回。
如果是改成下述场景,则可以使用引用返回

#include
using namespace std;
int& Count()
{
	static int n = 0;
	n++;
	return n;
}
int main()
{
	int& ret = Count();
	printf("%d\n", ret);
	printf("%d\n", ret);
	cout << ret << endl;
	cout << ret << endl;
	return 0;
}

C++初阶之C++入门最全详解_第16张图片
下面是一种引用的常规用法,比如栈结构中也可以用到,这里我用一个简易的顺序表进行演示,代码如下:

#include
using namespace std;
typedef struct list
{
	int arr[10];
	int size;
}L;
int& ret(L& a, int b)
{
	return a.arr[b];
}
int main()
{
	L a;
	a.arr[0] = 0;
	ret(a, 0)++;
	cout << a.arr[0] << endl;
	ret(a, 0) = 10;
	cout << a.arr[0] << endl;
	return 0;
}

C++初阶之C++入门最全详解_第17张图片

6.5 传值、传引用效率比较

以值作为参数或者返回值类型,在传参和返回期间,函数不会直接传递实参或者将变量本身直接返回,而是传递实参或者返回变量的一份临时的拷贝,因此用值作为参数或者返回值类型,效率是非常低下的,尤其是当参数或者返回值类型非常大时,效率就更低。

#include
#include 
using namespace std;
struct A { int a[10000]; };
void TestFunc1(A a){}
void TestFunc2(A& a){}
void TestRefAndValue()
{
 	A a;
 	// 以值作为函数参数
 	size_t begin1 = clock();
 	for (size_t i = 0; i < 10000; ++i)
 		TestFunc1(a);
 	size_t end1 = clock();
 	// 以引用作为函数参数
 	size_t begin2 = clock();
 	for (size_t i = 0; i < 10000; ++i)
 		TestFunc2(a);
 	size_t end2 = clock();
	// 分别计算两个函数运行结束后的时间
 	cout << "TestFunc1(A)-time:" << end1 - begin1 << endl;
 	cout << "TestFunc2(A&)-time:" << end2 - begin2 << endl;
}
int main()
{
	TestRefAndValue();
	return 0;
}

C++初阶之C++入门最全详解_第18张图片
值和引用的作为返回值类型的性能比较

#include
#include 
using namespace std;
struct A { int a[10000]; };
A a;
// 值返回
A TestFunc1() { return a; }
// 引用返回
A& TestFunc2() { return a; }
void TestReturnByRefOrValue()
{
	// 以值作为函数的返回值类型
	size_t begin1 = clock();
	for (size_t i = 0; i < 100000; ++i)
		TestFunc1();
	size_t end1 = clock();
	// 以引用作为函数的返回值类型
	size_t begin2 = clock();
	for (size_t i = 0; i < 100000; ++i)
		TestFunc2();
	size_t end2 = clock();
	// 计算两个函数运算完成之后的时间
	cout << "TestFunc1 time:" << end1 - begin1 << endl;
	cout << "TestFunc2 time:" << end2 - begin2 << endl;
}
int main()
{
	TestReturnByRefOrValue();
	return 0;
}

C++初阶之C++入门最全详解_第19张图片
通过上述代码的比较,我们不难发现传值和指针在作为传参以及返回值类型上效率相差很大。

6.6 引用和指针的区别

在语法概念上引用就是一个别名,没有独立空间,和其引用实体共用同一块空间。

int main()
{
	int a = 10;
	int& ra = a;
	cout<<"&a = "<<&a<<endl;
	cout<<"&ra = "<<&ra<<endl;
	return 0;
}

在底层实现上实际是有空间的,因为引用是按照指针方式来实现的。比如下面这段代码

#include
#include 
using namespace std;
int main()
{
	int a = 10;
	int& ra = a;
	ra = 20;
	int* pa = &a;
	*pa = 20;
	return 0;
}

再看它的汇编实现
C++初阶之C++入门最全详解_第20张图片
引用和指针的不同点:

  1. 引用概念上定义一个变量的别名,指针存储一个变量地址。
  2. 引用在定义时必须初始化,指针没有要求
  3. 引用在初始化时引用一个实体后,就不能再引用其他实体,而指针可以在任何时候指向任何一个同类型实体
  4. 没有NULL引用,但有NULL指针
  5. 在sizeof中含义不同:引用结果为引用类型的大小,但指针始终是地址空间所占字节个数(32位平台下占4个字节)
  6. 引用自加即引用的实体增加1,指针自加即指针向后偏移一个类型的大小
  7. 有多级指针,但是没有多级引用
  8. 访问实体方式不同,指针需要显式解引用,引用编译器自己处理
  9. 引用比指针使用起来相对更安全

7. 内联函数

7.1 概念

以inline修饰的函数叫做内联函数,编译时C++编译器会在调用内联函数的地方展开,没有函数调
用建立栈帧的开销,内联函数提升程序运行的效率。比如:

#include
#include 
using namespace std;
int Add(int left, int right)
{
	return left + right;
}
int main()
{
	int ret = 0;
	ret = Add(1, 2);
	return 0;
}

C++初阶之C++入门最全详解_第21张图片
如果在上述函数前增加inline关键字将其改成内联函数,在编译期间编译器会用函数体替换函数的调用。
查看方式:

  1. 在release模式下,查看编译器生成的汇编代码中是否存在call Add
  2. 在debug模式下,需要对编译器进行设置,否则不会展开(因为debug模式下,编译器默认不会对代码进行优化,以下给出vs2022的设置方式)
    C++初阶之C++入门最全详解_第22张图片
    C++初阶之C++入门最全详解_第23张图片
    C++初阶之C++入门最全详解_第24张图片
#include
#include 
using namespace std;
inline int Add(int left, int right)
{
	return left + right;
}
int main()
{
	int ret = 0;
	ret = Add(1, 2);
	return 0;
}

C++初阶之C++入门最全详解_第25张图片

7.2 特性

  1. inline是一种以空间换时间的做法,如果编译器将函数当成内联函数处理,在编译阶段,会用函数体替换函数调用,缺陷:可能会使目标文件变大,优势:少了调用开销,提高程序运行效率。
  2. inline对于编译器而言只是一个建议,不同编译器关于inline实现机制可能不同,一般建议:将函数规模较小(即函数不是很长,具体没有准确的说法,取决于编译器内部实现)、不是递归、且频繁调用的函数采用inline修饰,否则编译器会忽略inline特性。《C++prime》第五版关于inline的建议:内联说明只是向编译器发出的一个请求,编译器可以选择忽略这个请求。一般来说,内联机制用于优化规模较小、流程直接、频繁调用的函数。很多编译器都不支持内联递归函数,而且一个75行的函数也不大可能在调用点内联的展开。
  3. inline不建议声明和定义分离,分离会导致链接错误。因为inline被展开,就没有函数地址了,链接就会找不到。比如下面代码就是一个典型的内联函数定义和声明分离
// F.h
#include 
using namespace std;
inline void f(int i);
// F.cpp
#include "F.h"
void f(int i)
{
 cout << i << endl;
}
// main.cpp
#include "F.h"
int main()
{
 f(10);
 return 0;
}
// 链接错误:main.obj : error LNK2019: 无法解析的外部符号 "void __cdecl f(int)" (?f@@YAXH@Z),该符号在函数 _main 中被引用

8. auto关键字(C++11)

8.1 类型别名思考

随着程序越来越复杂,程序中用到的类型也越来越复杂,经常体现在:

  1. 类型难于拼写
  2. 含义不明确导致容易出错
#include 
#include 
int main()
{
 std::map<std::string, std::string> m{ { "apple", "苹果" }, { "orange", 
"橙子" }, {"pear","梨"} };
 std::map<std::string, std::string>::iterator it = m.begin();
 while (it != m.end())
 {
 //....
 }
 return 0;
}

std::map::iterator 是一个类型,但是该类型太长了,特别容
易写错。可能有人会想可以通过typedef给类型取别名,比如:

#include 
#include 
typedef std::map<std::string, std::string> Map;
int main()
{
 	Map m{ { "apple", "苹果" },{ "orange", "橙子" }, {"pear","梨"} };
 	Map::iterator it = m.begin();
	while (it != m.end())
 	{
 		//....
 	}
 	return 0;
}

使用typedef给类型取别名确实可以简化代码,但是typedef有会遇到新的难题:

typedef char* pstring;
int main()
{
 	const pstring p1;    // 编译成功还是失败?
 	const pstring* p2;   // 编译成功还是失败?
 	return 0;
}

在编程时,常常需要把表达式的值赋值给变量,这就要求在声明变量的时候清楚地知道表达式的
类型。然而有时候要做到这点并非那么容易,因此C++11给auto赋予了新的含义。

8.2 auto简介

在早期C/C++中auto的含义是:使用auto修饰的变量,是具有自动存储器的局部变量,但遗憾的是一直没有人去使用它,大家可思考下为什么?

C++11中,标准委员会赋予了auto全新的含义即:auto不再是一个存储类型指示符,而是作为一个新的类型指示符来指示编译器,auto声明的变量必须由编译器在编译时期推导而得。

#include
#include 
using namespace std;
int TestAuto()
{
	return 10;
}
int main()
{
	int a = 10;
	auto b = a;
	auto c = 'a';
	auto d = TestAuto();
	cout << typeid(b).name() << endl;
	cout << typeid(c).name() << endl;
	cout << typeid(d).name() << endl;
	//auto e; 无法通过编译,使用auto定义变量时必须对其进行初始化
	return 0;
}

C++初阶之C++入门最全详解_第26张图片
使用auto定义变量时必须对其进行初始化,在编译阶段编译器需要根据初始化表达式来推导auto的实际类型。因此auto并非是一种“类型”的声明,而是一个类型声明时的“占位符”,编译器在编译期会将auto替换为变量实际的类型。

8.3 auto的使用细则

  1. auto与指针和引用结合起来使用
    用auto声明指针类型时,用auto和auto*没有任何区别,但用auto声明引用类型时则必须加&
    例如:
#include
#include 
using namespace std;
int main()
{
	int x = 10;
	auto a = &x;
	auto* b = &x;
	auto& c = x;
	cout << typeid(a).name() << endl;
	cout << typeid(b).name() << endl;
	cout << typeid(c).name() << endl;
	*a = 20;
	cout << x << endl;
	*b = 30;
	cout << x << endl;
	c = 40;
	cout << x << endl;
	return 0;
}

C++初阶之C++入门最全详解_第27张图片
2. 在同一行定义多个变量
当在同一行声明多个变量时,这些变量必须是相同的类型,否则编译器将会报错,因为编译
器实际只对第一个类型进行推导,然后用推导出来的类型定义其他变量。

void TestAuto()
{
    auto a = 1, b = 2; 
    auto c = 3, d = 4.0;  //error 该行代码会编译失败,因为c和d的初始化表达式类型不同
}

8.3 auto不能推导的场景

  1. auto不能作为函数的参数
void TestAuto(auto a)
{}

编译失败,auto不能作为形参类型,因为编译器无法对a的实际类型进行推导

  1. auto不能直接用来声明数组
void TestAuto()
{
    int a[] = {1,2,3};
    auto b[] = {456};
}

同样这也是一个错误示例

  1. 为了避免与C++98中的auto发生混淆,C++11只保留了auto作为类型指示符的用法
  2. auto在实际中最常见的优势用法就是跟后面会提到的C++11提供的新式for循环,还有lambda表达式等进行配合使用。

9. 基于范围的for循环(C++11)

9.1 范围for的语法

在C++98中如果要遍历一个数组,可以按照以下方式进行:

#include
#include 
using namespace std;
void TestFor()
{
	int array[] = { 1, 2, 3, 4, 5 };
	for (int i = 0; i < sizeof(array) / sizeof(array[0]); ++i)
		array[i] *= 2;
	for (int* p = array; p < array + sizeof(array) / sizeof(array[0]); ++p)
		cout << *p << endl;
}
int main()
{
	TestFor();
	return 0;
}

C++初阶之C++入门最全详解_第28张图片
对于一个有范围的集合而言,由程序员来说明循环的范围是多余的,有时候还会容易犯错误。因此C++11中引入了基于范围的for循环。for循环后的括号由冒号“ :”分为两部分:第一部分是范围内用于迭代的变量,第二部分则表示被迭代的范围。

#include
#include 
using namespace std;
void TestFor()
{
	int array[] = { 1, 2, 3, 4, 5 };
	for (auto& e : array)
		e *= 2;
	for (auto e : array)
		cout << e << " ";
}
int main()
{
	TestFor();
	return 0;
}

在这里插入图片描述
与普通循环类似,可以用continue来结束本次循环,也可以用break来跳出整个循环。

9.2 范围for的使用条件

  1. for循环迭代的范围必须是确定的
    对于数组而言,就是数组中第一个元素和最后一个元素的范围;对于类而言,应该提供begin和end的方法,begin和end就是for循环迭代的范围。
    注意:以下代码就有问题,因为for的范围不确定
void TestFor(int array[])
{
    for(auto& e : array)
        cout<< e <<endl;
}
  1. 迭代的对象要实现++和==的操作。

10. 指针空值nullptr(C++11)

10.1 C++98中的指针空值

在良好的C/C++编程习惯中,声明一个变量时最好给该变量一个合适的初始值,否则可能会出现不可预料的错误,比如未初始化的指针。如果一个指针没有合法的指向,我们基本都是按照如下方式对其进行初始化:

void TestPtr()
{
int* p1 = NULL;
int* p2 = 0;
// ……
}

NULL实际是一个宏,在传统的C头文件(stddef.h)中,可以看到如下代码:

#ifndef NULL
#ifdef __cplusplus
#define NULL   0
#else
#define NULL   ((void *)0)
#endif
#endif

可以看到,NULL可能被定义为字面常量0,或者被定义为无类型指针(void)的常量*。不论采取何种定义,在使用空值的指针时,都不可避免的会遇到一些麻烦,比如:

void f(int)
{
	cout<<"f(int)"<<endl;
}
void f(int*)
{
 	cout<<"f(int*)"<<endl;
}
int main()
{
 	f(0);
 	f(NULL);
 	f((int*)NULL);
 	return 0;
}

C++初阶之C++入门最全详解_第29张图片

程序本意是想通过f(NULL)调用指针版本的f(int*)函数,但是由于NULL被定义成0,因此与程序的初衷相悖。在C++98中,字面常量0既可以是一个整形数字,也可以是无类型的指针(void*)常量,但是编译器默认情况下将其看成是一个整形常量,如果要将其按照指针方式来使用,必须对其进行强转(void *)0。

注意:

  1. 在使用nullptr表示指针空值时,不需要包含头文件,因为nullptr是C++11作为新关键字引入的。
  2. 在C++11中,sizeof(nullptr) 与 sizeof((void*)0)所占的字节数相同。
  3. 为了提高代码的健壮性,在后续表示指针空值时建议最好使用nullptr。

11.C程序与C++程序的相互调用

我们这里以栈结构声明和定义为例
C++初阶之C++入门最全详解_第30张图片

11.1 C++程序调用C程序

假设我们在C++程序中需要调用该C程序的头文件定义
首先打开建立好的C程序,右击项目名称,打开项目属性
C++初阶之C++入门最全详解_第31张图片

C++初阶之C++入门最全详解_第32张图片
再次右击项目名称,单击重新生成
C++初阶之C++入门最全详解_第33张图片
此时成功生成该C项目的静态库文件
C++初阶之C++入门最全详解_第34张图片
我们找到静态库文件位置,一会需要用到
C++初阶之C++入门最全详解_第35张图片
一般在你创建该项目的文件目录下,具体位置取决于你用的是X86或X64,release或是Debug,在对应文件夹下找
下面我们创建括号匹配的C++主程序,调用C程序中的栈,使该程序能够成功运行。
C++初阶之C++入门最全详解_第36张图片

建立好后,同样先打开项目属性
找到链接器选项中的常规,在附加依赖库目录中一栏中增加库目录(路径为我们刚刚生成的静态库所在的Debug文件夹)
C++初阶之C++入门最全详解_第37张图片
增加附加依赖项
名称为6_24项目生成的静态库名,一般是项目名 + .lib
“属性面板”—>”配置属性”—> “链接器”—>”输入”,附加依赖库中输入静态库名6_24.lib。
C++初阶之C++入门最全详解_第38张图片
我们先包含外部C程序头文件
C++初阶之C++入门最全详解_第39张图片

生成方案
在这里插入图片描述

结果报错了,这说明在链接的过程中出现了问题,也就是在我们的程序找不到静态库中函数的地址,原因是我们的静态库是C语言的,没有对函数进行修饰,但在我们的调用方是C++程序,在链接过程中找的是修饰过的函数名,因此无法找到函数的地址。

这时我们可以借助extern“C”改变C++程序的链接规则,让C++去按照C的规则去找函数名,即未经过任何修饰的函数名,那就一定能找到函数的地址,来去正确调用静态库。
C++初阶之C++入门最全详解_第40张图片
现在我们重新生成解决方案并调试运行
C++初阶之C++入门最全详解_第41张图片
可以看到成功了。

11.2 C程序调用C++程序

C++初阶之C++入门最全详解_第42张图片
需要注意的是,在C++中我们可以直接使用extern来改变编译规则,从而达到调用C的程序,但是C程序却不能适应C++的编译规则,所以在生成静态库前,我们需要修改一下C++程序的头文件

#ifdef __cplusplus
extern "C"
{
#endif
void StackInit(ST* ps);
void StackDestroy(ST* ps);
void StackPush(ST* ps, STDataType x);
void StackPop(ST* ps);
STDataType StackTop(ST* ps);
int StackSize(ST* ps);
bool STackEmpty(ST* ps);
#ifdef __cplusplus
}
#endif

这样在生成静态库文件时,库中就是按C语言的编译规则封装的,C程序就能够直接对其进行调用了
之后步骤同上生成静态库文件,再直接引用外部头文件即可
C++初阶之C++入门最全详解_第43张图片
C++初阶之C++入门最全详解_第44张图片

结语

有兴趣的小伙伴可以关注作者,如果觉得内容不错,请给个一键三连吧,蟹蟹你哟!!!
这篇文章是作者写博客以来最长的一篇,也是花费时间最长的,制作不易,如有不正之处敬请指出
感谢大家的来访,UU们的观看是我坚持下去的动力
在时间的催化剂下,让我们彼此都成为更优秀的人吧!!!

你可能感兴趣的:(C++初阶,c++,开发语言,算法)