- 如何使用DeepSeek训练模型
LCG元
大模型人工智能
目录准备工作硬件要求软件环境数据收集与预处理数据收集数据预处理模型构建与训练模型构建模型训练模型评估与调优评估指标调优方法部署与应用部署方式应用集成✍️相关问答DeepSeek模型在医疗领域的具体应用案例有哪些?临床辅助诊疗:医患关系的连接桥梁:医疗科研的学术助手:医疗服务体系革新:医学影像诊断:药物研发:基层医疗能力提升:医疗机器人智能化:如何利用DeepSeek进行多模态数据分析?脑图使用De
- 利用Python进行数据清洗与预处理:Pandas的高级用法
步入烟尘
python数据库开发语言
本文已收录于《Python超入门指南全册》本专栏专门针对零基础和需要进阶提升的同学所准备的一套完整教学,从基础到精通不断进阶深入,后续还有实战项目,轻松应对面试,专栏订阅地址:https://blog.csdn.net/mrdeam/category_12647587.html优点:订阅限时19.9付费专栏,私信博主还可进入全栈VIP答疑群,作者优先解答机会(代码指导、远程服务),群里大佬众多可以
- (15-3)DeepSeek混合专家模型初探:模型微调
码农三叔
训练RAG多模态)人工智能Deekseep深度学习大模型transformer
3.4模型微调在本项目中,微调脚本文件finetune.py提供了一套全面的工具,用于对DeepSeek-MoE预训练语言模型进行微调。支持加载特定任务的数据、对数据进行预处理和编码,以及通过多种配置选项(如LoRA量化、分布式训练等)对模型进行高效训练。用户可以根据自己的需求,通过命令行参数或配置文件调整微调策略,以优化模型在特定任务或数据集上的性能。3.4.1微调原理在DeepSeek-MoE
- 机器学习 网络安全
网络安全Max
机器学习web安全人工智能
实现机械学习网络安全的流程概述在实现“机器学习网络安全”这个任务中,我们需要经历一系列步骤,从数据准备、训练到模型评估。在这篇文章中,我将详细介绍每个步骤的具体操作,并附上相应的代码示例和解释。步骤下面是实现机器学习网络安全的流程,简单概括如下:步骤描述1.数据采集从网络安全日志或其他数据源中采集数据2.数据预处理对数据进行清洗、归一化和特征提取等操作3.模型选择选择适合网络安全场景的机器学习模型
- C++编程,#include <iostream>详解,以及using namespace std;作用
huiyuanzhenduo
c++开发语言
在C++编程中,#include是用来包含输入/输出流头文件的预处理指令。它允许程序使用标准的输入/输出对象如std::cout和std::cin,以便与标准输入和输出流进行交互。这一头文件是编写输入输出操作时必不可少的部分。讲到这里,有的同学可能会问我在程序中输入没有输入过那个std和两个冒号呀。那么我就要讲一下usingnamespacestd;的作用了当你在代码中添加了usingnamesp
- 有哪些滤波,原理是什么,分别在什么时候用
高力士等十万人
OpenCV计算机视觉图像处理opencvpython
均值滤波(AverageFiltering)原理:通过计算像素点邻域内像素值的平均值来作为该像素点滤波后的新值。例如,对于一个3x3的邻域,将9个像素值相加然后除以9得到滤波后的像素值。优点:简单易实现,能够对信号或图像进行一定程度的平滑处理,降低噪声的影响。应用场景:适用于对精度要求不高的图像或信号平滑场景,如视频监控中的简单图像预处理。中值滤波(MedianFiltering)原理:对于一个给
- Codeforces Round 977 (Div. 2)E1 Digital Village (Easy Version)(Floyd,贪心)
Auto114514
Codeforces算法c++数据结构图论
题目链接CodeforcesRound977(Div.2)E1DigitalVillage(EasyVersion)思路首先,我们注意到nnn的最大值只有400400400。因此,我们可以先用FloydFloydFloyd算法预处理出任意两座城市之间的最大延迟时间。之后,我们通过在线操作,每次贪心地选出最优的一个城市,并不断更新答案。即,我们先选出k=1k=1k=1时的最优解,之后从剩下的点里面挑
- C语言--指针(三)
weixin_51790712
c语言开发语言
预处理#includehello.cgcchello.c//编译预处理(预编译)汇编(汇编语言)---助记符编程:人类语言--->编程语言(C语言)---汇编语言--->机器语言(01010)八位的单片机01010101//加法//0101010116位32位01010101010101010101010101010101//add64位main(){inta=1;intb=2;printf("h
- 函数的传参、递归函数、预处理命令
m0_71564676
算法linux嵌入式c语言开发语言c++
一、函数的传参1.值传递实参将值传递给形参函数体内部想使用函数体外部变量值的时候,使用值传递形参是实参的副本,形参的变化不会影响实参的变化2.整形数组的传递intfun(intarray[],intlen);注意:1.array后面加[],表示传入的为整形数组名,而不是整数类型2.函数内部的array和外部的数组名为同一数组,里面数据的变化会影响外面数组中值的变化二、递归函数函数定义时调用函数体本
- PyTorch入门实战:从零搭建你的第一个神经网络
不打滑的西瓜皮
机器学习深度学习人工智能神经网络pythonpytorchpycharm
目录一、PyTorch简介:为什么选择它?二、环境搭建:5分钟快速安装三、核心概念:张量与自动求导1.张量(Tensor):深度学习的数据基石2.自动求导(Autograd):神经网络训练的核心四、实战:手写数字识别(MNIST)1.数据集加载与预处理2.构建卷积神经网络(CNN)3.训练与评估五、下一步学习建议一、PyTorch简介:为什么选择它?PyTorch是当前最热门的深度学习框架之一,由
- 管式超滤膜分离技术在苦咸水淡化中的应用与优势
莱特莱德
膜分离设备
全球水资源现状,尤其是苦咸水(含盐量介于淡水和海水之间的水体)资源的分布与挑战。管式超滤膜分离技术在苦咸水淡化领域中扮演着不可或缺的角色,尤其是在预处理阶段,其独特的设计和高效性能为整个淡化过程的顺利进行奠定了坚实基础。1.高效预处理优势说明:苦咸水往往含有较高浓度的悬浮颗粒、胶体、微生物以及部分有机物,这些杂质若直接进入反渗透(RO)等核心淡化单元,将导致膜堵塞、污染和效率下降。管式超滤膜凭借其
- Express 中间件分类
yqcoder
vue.js前端javascript
一、按功能用途分类1.应用级中间件这类中间件应用于整个Express应用程序,会对每个进入应用的请求进行处理。通过`app.use()`方法挂载,可用于执行一些全局性的任务,像日志记录、请求预处理、设置响应头这类操作。constexpress=require("express");constapp=express();//记录请求日志的应用级中间件app.use((req,res,next)=>{
- 字符串匹配
FLY@CYX
笔记算法哈希算法数据结构
本文章总结一些关于字符串匹配的方法1.普通暴力匹配。设置变量i,j,一个一个比对进行匹配2.字符串Hash流程:1.定义一个hash数组f【mn】2.设置一个质数p=131用于映射3.f[i]=f[i-1]*p+(s[i]-‘a’+1);将字符串进行映射,整数自然溢出4.再预处理一个阶乘数组po【mn】表示p的i次方5.最后就可以取出l,r区间中的字符串,用于比对,ans【l,r】=f[r]-f[
- PyTorch Lightning LightningDataModule 介绍
qq_27390023
pytorch人工智能python
LightningDataModule是PyTorchLightning提供的数据模块,用于统一管理数据加载流程(包括数据准备、预处理、拆分、批量加载等)。它的核心作用是将数据处理逻辑与模型解耦,提高代码的可复用性和可读性。1.LightningDataModule的作用✅封装数据预处理:数据下载、清理、转换等步骤都可以在LightningDataModule中完成。✅统一数据加载流程:确保训练、
- Pytorch学习之路(3)
AAAx1anyu
Pytorch学习之旅学习人工智能pytorch深度学习笔记
一.机器学习任务的整体流程1.数据预处理:数据格式统一、异常数据消除、必要数据转换,划分训练集、验证集、测试集2.选择模型3.设定损失函数、优化方法、对应的超参数4.用模型拟合训练集数据,在验证集/测试集上计算模型表现二.数据读入pytorch数据读入通过Dataset+DataLoader的方式完成,Dataset定义好数据的格式和数据变换形式,DataLoader用iterative的方式不断
- Less CSS 预处理器
安之若素づ
Lessless
目录安装注释嵌套变量操作命名空间和访问器扩展Extend混合Mixins传递规则集给混合函数Guards导入import转义字符合并父选择器Less用法Less插件程序化使用安装安装lessc以供全局使用:通过NPM(节点程序包管理器)在服务器上安装Less:npminstallless-g您还可以在包名称后面添加特定版本。例如:
[email protected]安装到项目开发npmil
- Next.js v15-样式处理
红绿鲤鱼
javascript开发语言Next.js
#题引:我认为跟着官方文档学习不会走歪路Next.js支持多种为应用程序添加样式的方法,包括:CSSModules:创建局部作用域的CSS类,避免命名冲突并提高可维护性。全局CSS:使用简单,对于有传统CSS经验的人来说很熟悉,但可能导致CSS包体积较大,且随着应用程序增长难以管理样式。TailwindCSS:一个实用优先的CSS框架,通过组合实用类可以快速创建自定义设计。CSS预处理器:比如Sa
- 【Elasticsearch】字符过滤器Character Filters
risc123456
Elasticsearchelasticsearch
在Elasticsearch中,字符过滤器(CharacterFilters)是文本分析器的重要组成部分,用于在分词之前对原始文本进行预处理。它们可以对字符流进行转换,例如添加、删除或更改字符。Elasticsearch提供了三种内置的字符过滤器:`html_strip`、`mapping`和`pattern_replace`。以下是它们的详细说明和使用示例:1.HTML剥离字符过滤器(HTMLS
- ViT和Transformer
Landon9
transformer深度学习人工智能
AttentionIsAllYouNeedVit在图像领域直接使用transformer,如果将2d图像直接转为一维向量,会面临参数两过大的问题。后来会思考在卷积之后再使用transformer,例如resNet50模型中,最后一层仅为14×14大小的矩阵。而本文是直接采用transformer模型,只需要对图片做一下预处理。ViT是将图像分为多个16×16的patch一张图像可以被分成多个小的图
- sklearn_pandas.DataFrameMapper的用法
zoujiahui_2018
#Pytorchsklearnpandas人工智能
文章目录介绍主要作用基本用法示例对不同列应用不同的转换器对多列应用相同的转换器输出为PandasDataFrame注意事项转换器的适用性:输出格式:与scikit-learn的兼容性:介绍DataFrameMapper是sklearn-pandas库中的一个工具,主要用于将PandasDataFrame与scikit-learn的预处理工具无缝结合。它的作用是将DataFrame的列映射到特定的特
- 深度解析Linux中的编译器gcc/g++
xghfcgc
linux运维服务器
gcc只用来编译C语言g++用来编译C/C++程序的翻译步骤经历四个过程的1、预处理(进行宏替换/去注释/条件编译/头文件展开等)这个-E的意思是从现在开始,进行程序的翻译,一但预处理做完了,就停下来那么这里的code.i保存的是预处理之后的结果我们这里的-o选项就是指明了我们的生成文件的名称了那么我们将这个code.i文件和原始的code.c进行对比下对比发现我们的源文件有24行,预处理结算的代
- CSS预处理器——SCSS的灵活语法
像素检测仪
css前端cssscss前端
目录一、概述二、SCSS的基本语法和特性(一)变量(二)嵌套规则(三)混合器(Mixins)(四)继承(五)运算符(六)函数(七)条件语句(八)循环三、SCSS的优势四、SCSS的应用场景一、概述SCSS(SassyCSS)是一种CSS的预处理器,是CSS的一种扩展语言。它在CSS的基础上增加了许多强大且实用的特性,如变量、嵌套规则、混合器(mixins)、继承、运算符和函数等。SCSS的文件扩展
- 零基础入门机器学习 -- 第二章机器学习的基本流程
山海青风
#机器学习机器学习python人工智能
1.机器学习的五个基本步骤在机器学习项目中,我们通常遵循以下步骤:收集数据:获取数据集,例如从文件、数据库或在线资源。清洗和预处理数据:处理缺失值、去除异常数据、转换数据格式等。选择合适的模型:不同任务适合不同模型,如分类使用逻辑回归、决策树等。训练模型:让模型从数据中学习模式并调整参数。评估模型:检查模型的准确率,以判断效果是否良好。本章会通过电影评分预测的示例,帮助你快速体验从数据到模型的基本
- 数据清洗与预处理:提升数据质量的关键步骤
Echo_Wish
实战高阶大数据pythonspark大数据
数据清洗与预处理:提升数据质量的关键步骤在大数据时代,数据已成为企业和组织的重要资产。然而,数据的价值取决于其质量。高质量的数据可以支持有效的决策和精确的分析,而低质量的数据则可能导致误导性的结论和错误的决策。因此,数据清洗与预处理成为了数据分析过程中不可或缺的关键步骤。一、数据质量的挑战在实际应用中,数据通常来自多个来源,如传感器、日志文件、用户输入等。这些数据可能存在以下问题:缺失值(Miss
- ORB-SLAM2源码学习:Tracking.cc:GrabImageStereo、GrabImageRGBD、GrabImageMonocular处理图像
PaLu-LvL
计算机视觉#ORB-SLAM2#局部建图线程计算机视觉人工智能c++ubuntu学习
前言该部分函数在Tracking.cc源文件中定义,用于处理图像。1.函数作用:1.GrabImageStereo函数的主要作用是处理输入的双目图像(左视图和右视图),进行必要的预处理(颜色转换),创建表示当前帧的对象,并执行跟踪操作,最后返回当前帧在世界坐标系下的变换矩阵。cv::MatTracking::GrabImageStereo(constcv::Mat&imRectLeft,const
- 【Elasticsearch】分析器的构成
risc123456
Elasticsearchelasticsearch
在Elasticsearch中,分析器(Analyzer)是一个处理文本数据的管道,它将输入的文本转换为一系列词元(tokens),并可以对这些词元进行进一步的处理和规范化。分析器由以下三个主要组件构成:1.字符过滤器(CharacterFilters)字符过滤器是分析器管道中的第一步,用于对输入文本进行预处理。它们可以添加、删除或修改文本中的字符。字符过滤器是可选的,一个分析器可以有零个或多个字
- 基于深度学习的半导体算法原理及应用
埃菲尔铁塔_CV算法
算法机器学习人工智能计算机视觉深度学习python
摘要随着半导体产业的持续发展,深度学习技术在该领域的应用日益广泛且深入。本文全面阐述了基于深度学习的半导体算法原理,涵盖卷积神经网络(CNN)、循环神经网络(RNN)及其变体长短时记忆网络(LSTM)和门控循环单元(GRU)等在半导体制造过程监测、缺陷检测、性能预测等方面的应用。详细分析了这些算法处理半导体相关数据的机制,探讨了算法实现中的关键技术,如数据预处理、模型训练与优化等。通过实际案例展示
- 模型应用管理的成功之道:策略、工具与团队协作
项目管理工具
管理模型应用涉及多个方面,包括模型的开发、部署、监控、优化和维护。以下是管理模型应用的关键步骤和策略:1.模型开发●需求分析:明确业务需求,确定模型的目标和评估指标。●数据准备:收集、清洗和预处理数据,确保数据质量。●模型选择:根据问题类型选择合适的算法和模型架构。●训练与验证:使用训练数据训练模型,并通过验证集评估模型性能。●超参数调优:通过交叉验证、网格搜索等方法优化模型超参数。2.模型部署●
- 使用 Python 和 LabelMe 实现图片验证码的自动标注
XMYX-0
python开发语言
文章目录使用Python和LabelMe实现图片验证码的自动标注环境准备必备工具安装依赖实现自动标注核心代码实现核心逻辑解析图像预处理OCR识别生成标注文件运行结果扩展与优化模型适配批量处理标注类型扩展总结测试使用Python和LabelMe实现图片验证码的自动标注在处理图片验证码时,手动标注是一项耗时且枯燥的工作。本文将介绍如何使用Python和LabelMe实现图片验证码的自动标注。通过结合P
- 利用DeepSeek构建个人知识库可以通过其AI能力实现高效的知识管理和检索
rockmelodies
神经网络人工智能架构
利用DeepSeek构建个人知识库可以通过其AI能力实现高效的知识管理和检索。以下是分步骤指南:1.确定知识库需求目标:明确知识库用途(如学习笔记、工作文档、研究资料)。格式:确定支持的格式(文本、PDF、网页、Markdown、Excel等)。规模:预估数据量级(小型个人库or大规模专业库)。2.数据收集与预处理数据来源:本地文件:整理文档、笔记、电子书等。网络资源:爬取网页、保存文章链接。结构
- 对于规范和实现,你会混淆吗?
yangshangchuan
HotSpot
昨晚和朋友聊天,喝了点咖啡,由于我经常喝茶,很长时间没喝咖啡了,所以失眠了,于是起床读JVM规范,读完后在朋友圈发了一条信息:
JVM Run-Time Data Areas:The Java Virtual Machine defines various run-time data areas that are used during execution of a program. So
- android 网络
百合不是茶
网络
android的网络编程和java的一样没什么好分析的都是一些死的照着写就可以了,所以记录下来 方便查找 , 服务器使用的是TomCat
服务器代码; servlet的使用需要在xml中注册
package servlet;
import java.io.IOException;
import java.util.Arr
- [读书笔记]读法拉第传
comsci
读书笔记
1831年的时候,一年可以赚到1000英镑的人..应该很少的...
要成为一个科学家,没有足够的资金支持,很多实验都无法完成
但是当钱赚够了以后....就不能够一直在商业和市场中徘徊......
- 随机数的产生
沐刃青蛟
随机数
c++中阐述随机数的方法有两种:
一是产生假随机数(不管操作多少次,所产生的数都不会改变)
这类随机数是使用了默认的种子值产生的,所以每次都是一样的。
//默认种子
for (int i = 0; i < 5; i++)
{
cout<<
- PHP检测函数所在的文件名
IT独行者
PHP函数
很简单的功能,用到PHP中的反射机制,具体使用的是ReflectionFunction类,可以获取指定函数所在PHP脚本中的具体位置。 创建引用脚本。
代码:
[php]
view plain
copy
// Filename: functions.php
<?php&nbs
- 银行各系统功能简介
文强chu
金融
银行各系统功能简介 业务系统 核心业务系统 业务功能包括:总账管理、卡系统管理、客户信息管理、额度控管、存款、贷款、资金业务、国际结算、支付结算、对外接口等 清分清算系统 以清算日期为准,将账务类交易、非账务类交易的手续费、代理费、网络服务费等相关费用,按费用类型计算应收、应付金额,经过清算人员确认后上送核心系统完成结算的过程 国际结算系
- Python学习1(pip django 安装以及第一个project)
小桔子
pythondjangopip
最近开始学习python,要安装个pip的工具。听说这个工具很强大,安装了它,在安装第三方工具的话so easy!然后也下载了,按照别人给的教程开始安装,奶奶的怎么也安装不上!
第一步:官方下载pip-1.5.6.tar.gz, https://pypi.python.org/pypi/pip easy!
第二部:解压这个压缩文件,会看到一个setup.p
- php 数组
aichenglong
PHP排序数组循环多维数组
1 php中的创建数组
$product = array('tires','oil','spark');//array()实际上是语言结构而不 是函数
2 如果需要创建一个升序的排列的数字保存在一个数组中,可以使用range()函数来自动创建数组
$numbers=range(1,10)//1 2 3 4 5 6 7 8 9 10
$numbers=range(1,10,
- 安装python2.7
AILIKES
python
安装python2.7
1、下载可从 http://www.python.org/进行下载#wget https://www.python.org/ftp/python/2.7.10/Python-2.7.10.tgz
2、复制解压
#mkdir -p /opt/usr/python
#cp /opt/soft/Python-2
- java异常的处理探讨
百合不是茶
JAVA异常
//java异常
/*
1,了解java 中的异常处理机制,有三种操作
a,声明异常
b,抛出异常
c,捕获异常
2,学会使用try-catch-finally来处理异常
3,学会如何声明异常和抛出异常
4,学会创建自己的异常
*/
//2,学会使用try-catch-finally来处理异常
- getElementsByName实例
bijian1013
element
实例1:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/x
- 探索JUnit4扩展:Runner
bijian1013
java单元测试JUnit
参加敏捷培训时,教练提到Junit4的Runner和Rule,于是特上网查一下,发现很多都讲的太理论,或者是举的例子实在是太牵强。多搜索了几下,搜索到两篇我觉得写的非常好的文章。
文章地址:http://www.blogjava.net/jiangshachina/archive/20
- [MongoDB学习笔记二]MongoDB副本集
bit1129
mongodb
1. 副本集的特性
1)一台主服务器(Primary),多台从服务器(Secondary)
2)Primary挂了之后,从服务器自动完成从它们之中选举一台服务器作为主服务器,继续工作,这就解决了单点故障,因此,在这种情况下,MongoDB集群能够继续工作
3)挂了的主服务器恢复到集群中只能以Secondary服务器的角色加入进来
2
- 【Spark八十一】Hive in the spark assembly
bit1129
assembly
Spark SQL supports most commonly used features of HiveQL. However, different HiveQL statements are executed in different manners:
1. DDL statements (e.g. CREATE TABLE, DROP TABLE, etc.)
- Nginx问题定位之监控进程异常退出
ronin47
nginx在运行过程中是否稳定,是否有异常退出过?这里总结几项平时会用到的小技巧。
1. 在error.log中查看是否有signal项,如果有,看看signal是多少。
比如,这是一个异常退出的情况:
$grep signal error.log
2012/12/24 16:39:56 [alert] 13661#0: worker process 13666 exited on s
- No grammar constraints (DTD or XML schema).....两种解决方法
byalias
xml
方法一:常用方法 关闭XML验证
工具栏:windows => preferences => xml => xml files => validation => Indicate when no grammar is specified:选择Ignore即可。
方法二:(个人推荐)
添加 内容如下
<?xml version=
- Netty源码学习-DefaultChannelPipeline
bylijinnan
netty
package com.ljn.channel;
/**
* ChannelPipeline采用的是Intercepting Filter 模式
* 但由于用到两个双向链表和内部类,这个模式看起来不是那么明显,需要仔细查看调用过程才发现
*
* 下面对ChannelPipeline作一个模拟,只模拟关键代码:
*/
public class Pipeline {
- MYSQL数据库常用备份及恢复语句
chicony
mysql
备份MySQL数据库的命令,可以加选不同的参数选项来实现不同格式的要求。
mysqldump -h主机 -u用户名 -p密码 数据库名 > 文件
备份MySQL数据库为带删除表的格式,能够让该备份覆盖已有数据库而不需要手动删除原有数据库。
mysqldump -–add-drop-table -uusername -ppassword databasename > ba
- 小白谈谈云计算--基于Google三大论文
CrazyMizzz
Google云计算GFS
之前在没有接触到云计算之前,只是对云计算有一点点模糊的概念,觉得这是一个很高大上的东西,似乎离我们大一的还很远。后来有机会上了一节云计算的普及课程吧,并且在之前的一周里拜读了谷歌三大论文。不敢说理解,至少囫囵吞枣啃下了一大堆看不明白的理论。现在就简单聊聊我对于云计算的了解。
我先说说GFS
&n
- hadoop 平衡空间设置方法
daizj
hadoopbalancer
在hdfs-site.xml中增加设置balance的带宽,默认只有1M:
<property>
<name>dfs.balance.bandwidthPerSec</name>
<value>10485760</value>
<description&g
- Eclipse程序员要掌握的常用快捷键
dcj3sjt126com
编程
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可以那么勤奋,每天都孜孜不倦得
- Android学习之路
dcj3sjt126com
Android学习
转自:http://blog.csdn.net/ryantang03/article/details/6901459
以前有J2EE基础,接触JAVA也有两三年的时间了,上手Android并不困难,思维上稍微转变一下就可以很快适应。以前做的都是WEB项目,现今体验移动终端项目,让我越来越觉得移动互联网应用是未来的主宰。
下面说说我学习Android的感受,我学Android首先是看MARS的视
- java 遍历Map的四种方法
eksliang
javaHashMapjava 遍历Map的四种方法
转载请出自出处:
http://eksliang.iteye.com/blog/2059996
package com.ickes;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Map.Entry;
/**
* 遍历Map的四种方式
- 【精典】数据库相关相关
gengzg
数据库
package C3P0;
import java.sql.Connection;
import java.sql.SQLException;
import java.beans.PropertyVetoException;
import com.mchange.v2.c3p0.ComboPooledDataSource;
public class DBPool{
- 自动补全
huyana_town
自动补全
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml&quo
- jquery在线预览PDF文件,打开PDF文件
天梯梦
jquery
最主要的是使用到了一个jquery的插件jquery.media.js,使用这个插件就很容易实现了。
核心代码
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.
- ViewPager刷新单个页面的方法
lovelease
androidviewpagertag刷新
使用ViewPager做滑动切换图片的效果时,如果图片是从网络下载的,那么再子线程中下载完图片时我们会使用handler通知UI线程,然后UI线程就可以调用mViewPager.getAdapter().notifyDataSetChanged()进行页面的刷新,但是viewpager不同于listview,你会发现单纯的调用notifyDataSetChanged()并不能刷新页面
- 利用按位取反(~)从复合枚举值里清除枚举值
草料场
enum
以 C# 中的 System.Drawing.FontStyle 为例。
如果需要同时有多种效果,
如:“粗体”和“下划线”的效果,可以用按位或(|)
FontStyle style = FontStyle.Bold | FontStyle.Underline;
如果需要去除 style 里的某一种效果,
- Linux系统新手学习的11点建议
刘星宇
编程工作linux脚本
随着Linux应用的扩展许多朋友开始接触Linux,根据学习Windwos的经验往往有一些茫然的感觉:不知从何处开始学起。这里介绍学习Linux的一些建议。
一、从基础开始:常常有些朋友在Linux论坛问一些问题,不过,其中大多数的问题都是很基础的。例如:为什么我使用一个命令的时候,系统告诉我找不到该目录,我要如何限制使用者的权限等问题,这些问题其实都不是很难的,只要了解了 Linu
- hibernate dao层应用之HibernateDaoSupport二次封装
wangzhezichuan
DAOHibernate
/**
* <p>方法描述:sql语句查询 返回List<Class> </p>
* <p>方法备注: Class 只能是自定义类 </p>
* @param calzz
* @param sql
* @return
* <p>创建人:王川</p>
* <p>创建时间:Jul