OpenCV+Python人脸识别、物体识别

Haar Cascade人脸识别
如何训练Haar分类器
原理分析

使用Haar Cascade分类器进行人脸识别

将Python源文件中data/haarcascades目录复制到项目中。

def detect_face(img):
    face_cascade = cv2.CascadeClassifier('./cascades/haarcascades/haarcascade_frontalface_default.xml')
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    faces = face_cascade.detectMultiScale(gray, 1.3, 5)
    for (x, y, w, h) in faces:
        img = cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)

def detect_eyes(img):
    eye_cascade = cv2.CascadeClassifier('./cascades/haarcascades/haarcascade_eye.xml')
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    eyes = eye_cascade.detectMultiScale(gray, 1.03, 5, 0, (40, 40))
    for (x, y, w, h) in eyes:
        img = cv2.rectangle(img, (x, y), (x + w, y + h), (0, 0, 255), 1)

"""
def detectMultiScale(self, image, scaleFactor=None, minNeighbors=None, flags=None, minSize=None, maxSize=None):

        detectMultiScale(image[, scaleFactor[, minNeighbors[, flags[, minSize[, maxSize]]]]]) -> objects
        .   @brief Detects objects of different sizes in the input image. The detected objects are returned as a list
        .   of rectangles.
        .   
        .   @param image Matrix of the type CV_8U containing an image where objects are detected.
        .   @param objects Vector of rectangles where each rectangle contains the detected object, the
        .   rectangles may be partially outside the original image.
        .   @param scaleFactor Parameter specifying how much the image size is reduced at each image scale.
        .   @param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have
        .   to retain it.
        .   @param flags Parameter with the same meaning for an old cascade as in the function
        .   cvHaarDetectObjects. It is not used for a new cascade.
        .   @param minSize Minimum possible object size. Objects smaller than that are ignored.
        .   @param maxSize Maximum possible object size. Objects larger than that are ignored. If `maxSize == minSize` model is evaluated on single scale.
        .   
        .   The function is parallelized with the TBB library.
"""

训练自己的Haar分类器

训练步骤

  1. 准备大量含有以及不含待识别物体的图片
  2. 创建含有待识别物体图片的向量文件(指定待识别物体在图片中的位置)
  3. 训练分类器

实现

下载安装opencv完整包,里面有要用的工具(opencv_createsamples等)

要识别的veno!

  1. 准备大量图像作为“消极”数据(我准备了3000+),所有图像的size要一样,我resize成了(300,300)
  2. 创建消极图像列表
def create_neg_list():
    with open('neg.txt', 'w') as f:
        for img in os.listdir('data/myhaar/neg'):
            line = 'neg/' + img + '\n'
            f.write(line)
  1. 准备大量含有待识别对象的“积极”数据
opencv_createsamples -img veno.jpg -bg neg.txt -info pos.txt -maxxangle 0.5 -maxyangle -0.5 -maxzangle 0.5 -num 3000

实际操作中,我准备了各个角度的veno共10张图片,每张图片各生成了300张积极图片

  1. 生成积极图像向量
opencv_createsamples -info pos.txt -num 3000 -w 100 -h 100 -vec pos.vec
  1. 训练
opencv_traincascade -data data -vec pos.vec -bg neg.txt -numPos 1800 -numNeg 900 -numStages 15 -w 100 -h 100 # pos一般是neg的1倍
  1. 识别
    训练之后的cascade.xml文件在data目录下,用该xml进行物体识别
    veno_cascade = cv2.CascadeClassifier('./cascades/haarcascades/veno_cascade.xml')
    camera = cv2.VideoCapture(0)
    success, frame = camera.read()

    while success and cv2.waitKey(1) & 0xFF != ord('q'):
        cv2.imshow('frame', frame)
        success, frame = camera.read()
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        veno = veno_cascade.detectMultiScale(gray, 1.5, 100) #调整参数
        if veno is not None:
            for (x, y, w, h) in veno:
                cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2)

    cv2.destroyAllWindows()
    camera.release()
识别效果

trouble shoot

error:
Can not get new positive sample. The most possible reason is insufficient count of samples in given vec-file
solution:
vec-file has to contain >= (numPos + (numStages-1) * (1 - minHitRate) * numPos) + S     说明:(S 即为 numNeg)
7000 >= (numPos + (20-1) * (1 - 0.999) * numPos) + 2973

你可能感兴趣的:(OpenCV+Python人脸识别、物体识别)