YOLOv8-TensorRT C++ ubuntu部署

YOLOv8-TensorRT C++ ubuntu20.04部署

先要安装好显卡驱动、CUDA、CUDNN

以ubuntu20.04、显卡1650安装470版本的显卡驱动、11.3版本的CUDA及8.2版本的CUDNN为例

下载TensorRT

进入网站:

https://developer.nvidia.com/nvidia-tensorrt-8x-download

进行勾选下载:

YOLOv8-TensorRT C++ ubuntu部署_第1张图片

YOLOv8-TensorRT C++ ubuntu部署_第2张图片

TAR是免安装直接解压可用的

解压:

tar -zxvf TensorRT-8.4.2.4.Linux.x86_64-gnu.cuda-11.6.cudnn8.4.tar.gz

cd TensorRT-8.4.2.4/samples/sampleMNIST

make

cd ../../bin

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/YourPath/TensorRT-8.4.2.4/lib

./sample_mnist

终端打印出如下内容表明cuda+cudnn+tensorrt安装正常:

YOLOv8-TensorRT C++ ubuntu部署_第3张图片

可以在.bashrc里面加入TensorRT的路径:

# TensorRT
export TRT_PATH=/usr/local/TensorRT-8.4.2.4
export PATH=$PATH:$TRT_PATH/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$TRT_PATH/lib
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$TRT_PATH/targets/x86_64-linux-gnu/lib

使用YOLOv8-TensorRT

先下载

https://github.com/triple-Mu/YOLOv8-TensorRT.git

git clone https://github.com/triple-Mu/YOLOv8-TensorRT.git

cd YOLOv8-TensorRT

pip install -r requirements.txt

C++ build:

CMakeLists中需要将TensorRT路径改一下

# TensorRT
set(TensorRT_INCLUDE_DIRS /usr/include/x86_64-linux-gnu)
set(TensorRT_LIBRARIES /usr/lib/x86_64-linux-gnu)

加下来就可以编译了

export root=${PWD}
cd csrc/detect/normal
mkdir build
cmake ..
make
mv yolov8 ${root}
cd ${root}

官方给出的model是pt格式,我们需要TensorRT要用的engine格式,

PyTorch model -> ONNX -> TensorRT Engine

Then,transform!

# PyTorch model -> ONNX

from ultralytics import YOLO

# Load a model
model = YOLO("yolov8s.pt")  # load a pretrained model (recommended for training)
success = model.export(format="onnx", opset=11, simplify=True)  # export the model to onnx format
assert success

ONNX -> TensorRT Engine需要用TensorRT

终端进入TensorRT目录

cd samples/trtexec
make

然后退到TensorRT进入bin文件夹可以看到trtexec可执行文件

/bin/trtexec \
--onnx=yolov8s.onnx \
--saveEngine=yolov8s.engine \
--fp16

路径不要错就可以成功将onnx转为engine格式了,运行时间可能会有些长

如果在C++ build时遇到下面error可以按下面的解决方案:

error: invalid initialization of reference of type ‘std::vector&’ from expression of type ‘std::vector >’
   69 |         cv::glob(path + "/*.jpg", imagePathList);

将第46行:

    std::vector imagePathList;

改为:

    std::vector imagePathList;

接下来就可以使用了

# infer image
./yolov8 yolov8s.engine data/bus.jpg
# infer images
./yolov8 yolov8s.engine data
# infer video
./yolov8 yolov8s.engine data/test.mp4 # the video path

如:

./yolov8 pt/yolov8n.engine data/zidane.jpg

你可能感兴趣的:(SLAM学习,计算机视觉,ubuntu,TensorRT,YOLOv8)