信号量的本质是一个计数器,可以用来衡量临界资源中资源数量多少
P操作:申请信号量称为P操作,P操作的本质就是让计数器减1。
V操作:释放信号量称为V操作,V操作的本质就是让计数器加1
int sem_init(sem_t *sem, int pshared, unsigned int value);
sem:需要初始化的信号量。
pshared:0表示线程间共享,非0表示进程间共享。
value:信号量的初始值(特定资源的初始数量)。
int sem_wait(sem_t *sem);
int sem_post(sem_t *sem);
int sem_destroy(sem_t *sem);
#pragma once
#include
#include
#include
#include
#include
static const int gcap = 5;
template
class RingQueue
{
private:
void P(sem_t &sem)
{
int n = sem_wait(&sem);
assert(n == 0); // if
(void)n;
}
void V(sem_t &sem)
{
int n = sem_post(&sem);
assert(n == 0);
(void)n;
}
public:
RingQueue(const int &cap = gcap): _queue(cap), _cap(cap)
{
int n = sem_init(&_spaceSem, 0, _cap);
assert(n == 0);
n = sem_init(&_dataSem, 0, 0);
assert(n == 0);
_productorStep = _consumerStep = 0;
pthread_mutex_init(&_pmutex, nullptr);
pthread_mutex_init(&_cmutex, nullptr);
}
// 生产者
void Push(const T &in)
{
//先申请信号量,在加锁
P(_spaceSem);
pthread_mutex_lock(&_pmutex);
_queue[_productorStep++] = in;
_productorStep %= _cap;
pthread_mutex_unlock(&_pmutex);
V(_dataSem);
}
// 消费者
void Pop(T *out)
{
//先申请信号量,在加锁
P(_dataSem);
pthread_mutex_lock(&_cmutex);
*out = _queue[_consumerStep++];
_consumerStep %= _cap;
pthread_mutex_unlock(&_cmutex);
V(_spaceSem);
}
~RingQueue()
{
sem_destroy(&_spaceSem);
sem_destroy(&_dataSem);
pthread_mutex_destroy(&_pmutex);
pthread_mutex_destroy(&_cmutex);
}
private:
std::vector _queue;
int _cap;
sem_t _spaceSem; // 生产者的空间资源
sem_t _dataSem; // 消费者的数据资源
int _productorStep;
int _consumerStep;
pthread_mutex_t _pmutex;
pthread_mutex_t _cmutex;
};
#pragma once
#include
#include
#include
#include
class Task
{
using func_t = std::function;
// typedef std::function func_t;
public:
Task()
{}
Task(int x, int y, char op, func_t func)
:_x(x), _y(y), _op(op), _callback(func)
{}
std::string operator()()
{
int result = _callback(_x, _y, _op);
char buffer[1024];
snprintf(buffer, sizeof buffer, "%d %c %d = %d", _x, _op, _y, result);
return buffer;
}
std::string toTaskString()
{
char buffer[1024];
snprintf(buffer, sizeof buffer, "%d %c %d = ?", _x, _op, _y);
return buffer;
}
private:
int _x;
int _y;
char _op;
func_t _callback;
};
const std::string oper = "+-*/%";
int mymath(int x, int y, char op)
{
int result = 0;
switch (op)
{
case '+':
result = x + y;
break;
case '-':
result = x - y;
break;
case '*':
result = x * y;
break;
case '/':
{
if (y == 0)
{
std::cerr << "div zero error!" << std::endl;
result = -1;
}
else
result = x / y;
}
break;
case '%':
{
if (y == 0)
{
std::cerr << "mod zero error!" << std::endl;
result = -1;
}
else
result = x % y;
}
break;
default:
// do nothing
break;
}
return result;
}
#include "RingQueue.hpp"
#include "Task.hpp"
#include
#include
#include
#include
#include
std::string SelfName()
{
char name[128];
snprintf(name, sizeof(name), "thread[0x%x]", pthread_self());
return name;
}
void *ProductorRoutine(void *rq)
{
RingQueue *ringqueue = static_cast *>(rq);
while(true)
{
int x = rand() % 10;
int y = rand() % 5;
char op = oper[rand()%oper.size()];
Task t(x, y, op, mymath);
// 生产任务
ringqueue->Push(t);
// 输出提示
std::cout << SelfName() << ", 生产者派发了一个任务: " << t.toTaskString() << std::endl;
sleep(1);
}
}
void *ConsumerRoutine(void *rq)
{
RingQueue *ringqueue = static_cast *>(rq);
while(true)
{
Task t;
//消费任务
ringqueue->Pop(&t);
std::string result = t();
std::cout << SelfName() << ", 消费者消费了一个任务: " << result << std::endl;
}
}
int main()
{
srand((unsigned int)time(nullptr) ^ getpid() ^ pthread_self() ^ 0x71727374);
RingQueue *rq = new RingQueue();
pthread_t p[4], c[8];
for(int i = 0; i < 4; i++) pthread_create(p+i, nullptr, ProductorRoutine, rq);
for(int i = 0; i < 8; i++) pthread_create(c+i, nullptr, ConsumerRoutine, rq);
for(int i = 0; i < 4; i++) pthread_join(p[i], nullptr);
for(int i = 0; i < 8; i++) pthread_join(c[i], nullptr);
delete rq;
return 0;
}