- 「分块」数列分块入门1 – 9 by hzwer 解题记录
GA_PK
出处学习蓝书的时候感觉书上关于分块的题目太少了.而且都是难度较大的一些分块题目,想巩固一下分块方面的知识,就找到了hzwer大佬的分块入门知识介绍.用这篇博客记录一下.从树状数组到线段树再到分块.都是对区间信息的快速处理来达到想要的效果.树状数组效率最优,可是拓展性实在不高.线段树效率稍微差一点但是拓展性较好,可是在信息不满足区间可加性的情况下代码难度会高很多.而分块效率上最差但是可以接受,且拓展
- 基于深度学习的大规模模型训练
SEU-WYL
深度学习dnn深度学习人工智能dnn
基于深度学习的大规模模型训练涉及训练具有数百万甚至数十亿参数的深度神经网络,以处理复杂的任务,如自然语言处理、计算机视觉和语音识别。以下是关于基于深度学习的大规模模型训练的详细介绍:1.背景和动机数据和模型规模增长:随着数据量和模型复杂度的增加,传统的单机或小规模集群训练难以满足需求。计算资源需求:大规模模型训练需要大量计算资源和存储,单一设备无法满足。任务复杂性:处理复杂任务(如GPT-3、BE
- GNU编译优化级别-O -O1 -O2 -O3
hemmingway
C++Linux
最近做一个算法的GPU加速,发现实际上使用gcc的-O3(最高级编译优化)选项,可以获得很高的加速比,我的程序里达到了3倍的样子,有时效果甚至比GPU加速好。因此小小学习了下GNU的编译优化。附言一句,在进行调试的时候,最好关闭编译优化,不然程序自动优化,执行的步骤可能稍有变化。GNU编译器提供-O选项供程序优化使用:-O提供基础级别的优化-O2提供更加高级的代码优化,会占用更长的编译时间-O3提
- 「DeepSeek接班OpenAI」,最新开源的R1推理模型,让AI圈爆了
人工智能学家
人工智能
来源:前沿科技分享圈近日,AI领域迎来了一次重大突破,DeepSeek正式推出了其最新研发的开源推理模型——DeepSeek-R1。这一模型在数学、代码和自然语言推理等关键任务上的表现,已经能够与OpenAI的o1正式版相媲美,引发了AI研究者和从业者的广泛关注。多阶段训练:创新的模型架构DeepSeek-R1的训练方式采用了多阶段循环的策略,具体包括基础训练、强化学习(RL)、微调等多个阶段。这
- DeepSeek R1:AI领域的新标杆
XianxinMao
人工智能
标题:DeepSeekR1:AI领域的新标杆文章信息摘要:DeepSeek的R1模型在性能上与OpenAI的o1模型相当,甚至在某些方面更具优势,尤其在成本控制上表现出色。R1模型通过开源策略展示了其在AI领域的开放态度,推动了技术的广泛发展。此外,R1-Zero模型通过强化学习和测试时计算实现了强大的推理能力,无需监督微调数据,标志着中国在AI领域的快速崛起,挑战美国的主导地位。AI模型在推理能
- 38字以上的标题:OTFS仿真 MIMO-OTFS MP检测算法:详细注释、ZF均衡、低复杂度LU分解和误差纠正MMSE均衡检测:OMP及基本信道估计、MRC检测,结合索引调制IM、空间调制SM、正交
PGCUZcQeR
网络matlab人工智能
OTFS仿真MIMO-OTFSMP检测算法(详细注释),ZF均衡,低复杂度lu分解和误差纠正mmse均衡检测omp及基本信道估计,MRC检测,结合索引调制IM,空间调制SM,正交空间调制,SM-OFDM,多天线MIMO,AF,DF中继,理想脉冲/矩形脉冲,TDTF域DD域信道以及最新OTSM调制OFDM和OTFS性能对比。代码均可出,均可正常运行。适合本科B设及研究生学习。ID:971873550
- 【学习心得】几种特殊但非常必要学习的pip安装小知识
小oo呆
【学习心得】学习pippython
在学习Python全栈的过程中要接触非常多的库,很多库都是直接pipinstall就搞定了!但有一些总是特立独行!一、安装时的名字与导包时名字不同的首先举例大名鼎鼎的OpenCV#安装OpenCVpipinstallopencv-python#导包importcv2再来一个大名鼎鼎的sklearn#安装pipinstallscikit-learn#导包举例fromsklearn.preproces
- 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】1.25 视觉风暴:NumPy驱动数据可视化
精通代码大仙
numpypythonnumpypython信息可视化
1.25视觉风暴:NumPy驱动数据可视化目录视觉风暴:NumPy驱动数据可视化百万级点云实时渲染优化CT医学影像三维重建实战交互式数据分析看板开发地理空间数据可视化进阶WebAssembly前端渲染融合1.25.1百万级点云实时渲染优化1.25.2CT医学影像三维重建实战1.25.3交互式数据分析看板开发1.25.4地理空间数据可视化进阶1.25.5WebAssembly前端渲染融合视觉风暴:N
- 【Python TensorFlow】入门到精通
极客代码
玩转Pythonpythontensorflow开发语言人工智能深度学习
TensorFlow是一个开源的机器学习框架,由Google开发,广泛应用于机器学习和深度学习领域。本篇将详细介绍TensorFlow的基础知识,并通过一系列示例来帮助读者从入门到精通TensorFlow的使用。1.TensorFlow简介1.1什么是TensorFlow?TensorFlow是一个开源的软件库,主要用于数值计算,特别是在机器学习和深度学习领域。它提供了一个灵活的架构来定义复杂的数
- 【学习心得】Python好库推荐——PEFT
小oo呆
【学习心得】人工智能python语言模型
一、PEFT是什么?PEFT(Parameter-EfficientFine-Tuning)是一种在深度学习中进行参数高效微调的技术。这种技术主要应用于大型预训练模型的微调过程中,目的是在保持模型性能的同时减少所需的计算资源和时间。通过PEFT,可以有效地调整模型以适应特定任务或数据集,而无需对整个模型的所有参数进行全面微调。二、PEFT使用场景在计算资源有限的情况下,如边缘设备、移动设备或低成本
- Python 机器学习 基础 之 【常用机器学习库】 NumPy 数值计算库
仙魁XAN
Python机器学习基础+实战案例python机器学习numpy数值计算
Python机器学习基础之【常用机器学习库】NumPy数值计算库目录Python机器学习基础之【常用机器学习库】NumPy数值计算库一、简单介绍二、Numpy基础1、安装NumPy2、导入NumPy3、创建数组4、数组操作5、常用函数6、矩阵运算7、广播机制8、随机数三、在机器学习中使用到Numpy的简单示例1、数据预处理1.1数据归一化1.2数据标准化2、特征工程1.1多项式特征3、简单线性回归
- 深度学习训练模型损失Loss为NaN或者无穷大(INF)原因及解决办法
余弦的倒数
学习笔记机器学习深度学习pytorch深度学习人工智能机器学习
文章目录一、可能原因==1.学习率过高====2.batchsize过大==3.梯度爆炸4.损失函数不稳定5.数据预处理问题6.数据标签与输入不匹配7.模型初始化问题8.优化器设置问题9.数值问题==10.模型结构设计缺陷==二、调试步骤三、常见预防措施一、可能原因1.学习率过高原因:学习率过高可能导致梯度爆炸,权重更新幅度过大,导致模型参数变为无穷大或NaN。学习率设置过大是常见问题,它会让参数
- 深度解读大语言模型中的Transformer架构
老三不说话、
transformer
一、Transformer的诞生背景传统的循环神经网络(RNN)和长短期记忆网络(LSTM)在处理自然语言时存在诸多局限性。RNN由于其递归的结构,在处理长序列时容易出现梯度消失和梯度爆炸的问题。这导致模型难以捕捉长距离的依赖关系,对于复杂的自然语言文本,无法有效地学习到上下文的关键信息。LSTM虽然在一定程度上缓解了梯度消失的问题,但依然存在梯度不稳定的情况。而且,RNN和LSTM在计算过程中,
- 2.3、numpy 数组:广播机制、遍历数组
融码一生
Python数据处理与分析numpynumpypython开发语言数据分析
点击上方分类专栏、进行系统性学习(文末可扫码领取资料)1、广播机制NumPy中的广播机制(Broadcast)旨在解决不同形状数组之间的算术运算问题。如果进行运算的两个数组形状完全相同,它们直接可以做相应的运算。importnumpyasnpa=np.array([0.1,0.2,0.3,0.4])b=np.array([10,20,30,40])c=a*b#jy:[1.4.9.16.]print
- 【Unity 渲染插件】GPU Instancer 基于 GPU 实例化技术,旨在解决 Unity 中大量重复对象的渲染瓶颈问题,显著提升游戏性能
Unity游戏资源学习屋
Unity插件
GPUInstancer是一款专注于高性能渲染的Unity插件,基于GPU实例化技术,旨在解决Unity中大量重复对象的渲染瓶颈问题,显著提升游戏性能。通过减少CPU到GPU的数据传输和批处理开销,该插件特别适合渲染复杂的开放世界场景、自然环境、城市布局等需要大量重复物体的场景。核心功能解析实时GPU实例化GPUInstancer能够自动检测和实例化场景中的重复网格对象,将它们的渲染交给GPU实现
- 高级java每日一道面试题-2025年01月24日-框架篇[SpringMVC篇]-SpringMVC常用的注解有哪些?
java我跟你拼了
java每日一道面试题javaSpringMVC常用的注解
如果有遗漏,评论区告诉我进行补充面试官:SpringMVC常用的注解有哪些?我回答:一、核心注解详解1.@Controller作用:将一个普通的Java类标记为处理请求的控制器。应用场景:在SpringMVC中起到了路由请求和处理业务逻辑的作用,并注册为Spring容器的Bean。使用方式:通过组件扫描或显式配置等方式,让Spring能够自动检测到这个控制器并进行实例化和管理。@Controlle
- 联想R720升级Win11教程 拯救者R720升级Win11方法
m0_70960708
笔记电脑
拯救者r720是联想拯救者系列在2017年推出的笔记本型号,虽然已经过去5年了,但是配置却还可以畅玩很多游戏,不少联想R720的用户也想要升级到Win11系统,那么到底能不能升级呢?下面就一起来看看吧。r720怎么升级win11:1、很遗憾的是,r720使用的是第七代英特尔处理器,不满足微软对于win11的要求。2、因此用户如果想要升级win11的话,必须要跳过系统检测,在pe系统之中进行升级。3
- 通过命令行工作流提升工作效率的实战教程(持续更新)
herosunly
大模型工作流实战教程
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了通过命令行工作流提升工作效率的实战教程,希望对使用大语言模型的同学们有所
- Python进阶————迭代器与生成器
记得多吃点
Python进阶知识python开发语言
迭代器与生成器前言一、迭代器二、生成器2.1创建生成器的两种方式2.1.1生成器推导式2.1.2yield关键字2.2使用生成器生成批次数据三、区别与联系3.1区别3.2联系总结前言我们之前学习遍历的时候,系统会一下子给我们显示所有的数据,我们希望当我们需要数据的时候再给我们数据,那么,我们就需要迭代器与生成器的帮助。迭代器和生成器在Python中都是用来处理数据序列的重要工具,它们之间的主要区别
- python入门教程jupyter_Jupyter Notebooks的安装和使用介绍
weixin_39953618
最近又开始重新学习Python,学习中使用到了一款编辑器JupyterNotebooks,非常想安利给初学python的同学。注:本文内容仅针对windows环境下安装和配置JupyterNotebooks。1.JupyterNotebooks简介国际惯例还是来一段官方的介绍:Notebooks其实就像是你的python笔记本一样,不仅可以运行书写的python代码,同时还支持markdown格式
- 【YOLO11改进 - Backbone主干】LSKNet:旋转目标检测新网络,通过DW卷积核和空间选择机制来动态调整目标的感受野
YOLO大师
目标检测网络人工智能yolov11YOLOpython计算机视觉
YOLOv11目标检测创新改进与实战案例专栏文章目录:YOLOv11创新改进系列及项目实战目录包含卷积,主干注意力,检测头等创新机制以及各种目标检测分割项目实战案例专栏链接:YOLOv11目标检测创新改进与实战案例文章目录YOLOv11目标检测创新改进与实战案例专栏介绍摘要创新点文章链接基本原理**LSKNet的结构**3.2大核卷积3.3空间核选择核心代码YOLO11引入代码tasks注册步骤1
- 第03课:Anaconda 与 Jupyter Notebook
红色石头Will
深度学习PyTorch极简入门人工智能深度学习PyTorch
本文将为大家介绍深度学习实战非常重要的两个工具:Anaconda和JupyterNotebook。Anaconda为什么选择Anaconda我们知道Python是人工智能的首选语言。为了更好、更方便地使用Python来编写深度学习相关程序,可以使用集成开发环境或集成管理系统,最流行的比如PyCharm和Anaconda。本文我推荐使用Anaconda。之所以选择Anaconda,是因为Anacon
- YOLOv10改进策略【卷积层】| ICCV-2023 LSK大核选择模块 包含二次独家创新
Limiiiing
YOLOv10改进专栏YOLO目标检测计算机视觉深度学习
一、本文介绍本文记录的是利用大核选择模块LSK优化YOLOv10的目标检测网络模型。在大尺寸图像中的小目标检测任务中,一直是个难题,无法仅基于外观实现较好的识别,因此需要广泛的上下文信息进行辅助。但不同物体所需的上下文信息范围不同,为了更好地对这些特性进行建模,本文利用大核选择模块二次创新C3k2,使模型能够产生具有各种大感受野的多个特征的同时,动态地根据输入调整模型的行为,使网络更好地适应图像中
- 【PHP】Laravel 介绍 史上最优雅的 PHP 框架
Ustinian_310
laravelphp
1.Laravel介绍Laravel是一个开源的PHPWeb应用框架,由TaylorOtwell创建并于2011年6月首次发布。它遵循模型-视图-控制器(MVC)架构模式,旨在简化Web开发的任务,提供了一套丰富的功能,帮助开发者快速构建安全、可扩展的Web应用程序。附注:文末附有Laravel的社区入口,感兴趣的小伙伴可以去社区寻找更多学习资料以下是Laravel的一些主要特点和组件:核心特点M
- PyQt5中的QObject对象
strive_one
QObject在Qt中QObject是所有类的基类,换而言之是在Qt中所有的类均继承自QObject,这使得QObject中的所有方法在其它类中使用。所以学习QObject中的方法有其特殊的意义。继承结构测试的方法fromPyQt5.QtCoreimportQObject#创建一个QObject对象obj=QObject()#获得父类mros=QObject.mro()formroinmros:p
- 深度学习(DL/ML)学习路径
jackl的科研日常
深度学习学习人工智能
最近几年,尤其是自从2016年AlphaGo打败李世石事件后,人工智能技术受到了各行业极大关注。其中以机器学习技术中深度学习最受瞩目。主要原因是这些技术在科研领域和工业界的应用效果非常好,大幅提升了算法效率、降低了成本。因而市场对相关技术有了如此大的需求。我在思考传统行业与这些新兴技术结合并转型的过程中,亦系统的回顾了深度学习及其相关技术。本文正是我在学习过程中所作的总结。我将按照我所理解的学习路
- YOLOv10改进,YOLOv10检测头融合DynamicHead,添加小目标检测层(四头检测)+CA注意机制,全网首发
挂科边缘
YOLOv10改进YOLO目标检测人工智能深度学习计算机视觉
摘要作者提出一种新的检测头,称为“动态头”,旨在将尺度感知、空间感知和任务感知统一在一起。如果我们将骨干网络的输出(即检测头的输入)视为一个三维张量,其维度为级别×空间×通道,这样的统一检测头可以看作是一个注意力学习问题,直观的解决方案是对该张量进行全自注意力机制的构建。然而,直接在所有维度上学习注意力函数过于困难,且计算成本过高。因此,作者提出通过分别在特征的每个特定维度上部署注意力机制,即在级
- hive表指定分区字段搜索_Hive学习-Hive基本操作(建库、建表、分区表、写数据)...
weixin_39710660
hive表指定分区字段搜索
hive简单认识Hive是建立在HDFS之上的数据仓库,所以Hive的数据全部存储在HDFS上。Hive的数据分为两部分,一部分是存在HDFS上的具体数据,一部分是描述这些具体数据的元数据信息,一般Hive的元数据存在MySQL上。Hive是类SQL语法的数据查询、计算、分析工具,执行引擎默认的是MapReduce,可以设置为Spark、Tez。Hive分内部表和外部表,外部表在建表的同时指定一个
- R语言 安装zip包
毕崇亮
r语言开发语言
我整理的一些关于【管理】的项目学习资料(附讲解~~)和大家一起分享、学习一下:https://d.51cto.com/eDOcp1如何在R语言中安装zip包作为一名刚入行的开发者,你可能对R语言中的包管理有些困惑。今天,我将带你一步步了解如何在R语言中安装zip包,并通过简单的示例帮助你掌握这一技能。安装包可以让你使用更丰富的功能与工具,所以这是一项非常重要的基础技能。安装zip包的流程在开始之前
- 【hadoop学习之路】Hive HQL 语句实现查询
新世纪debug战士
hadoop学习之路hive
目录表数据表1students_data.txt表2course.txt实验步骤结论表数据表1students_data.txt21434,Sara,F,21,20,73,classC41443,Mary,M,19,30,90,classA43333,Dery,F,20,40,85,classB45454,Mary,F,22,10,91,classA14634,Henry,M,18,50,56,c
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓