- 深度学习基因组学+机器学习单细胞分析,当下最火热研究方向!
qwmb919
人工智能深度学习机器学习python
深度学习已经被广泛应用于基因组学研究中,利用已知的训练集对数据的类型和应答结果进行预测,深度学习,可以进行预测和降维分析。深度学习模型的能力更强且更灵活,在适当的训练数据下,深度学习可以在较少人工参与的情况下自动学习特征和规律。调控基因组学,变异检测,致病性评分成功应用。深度学习可以提高基因组数据的可解释性,并将基因组数据转化为可操作的临床信息。深度学习通过强大的深度神经网络模型从高维大数据中自动
- MySQL 索引
&梧桐树夏
MySQL数据库mysql数据库
MySQL索引文章目录MySQL索引1.索引概念2.索引结构3.索引分类4.索引使用4.1单列索引和联合索引4.2覆盖索引4.3前缀索引5.SQL提示6.索引失效情况1.索引概念索引可以理解为MySQL中用来高效检索数据的数据结构,它是有序的,因为它底层使用的数据结构是B+树;从索引的设计原则上看,一般建议根据以下方式建立索引:针对于数据量较大,且查询比较频繁的表建立索引;针对于常用作查询条件(w
- <深入浅出图神经网络> 读书笔记
数学工具构造器
GNN
文章目录笔记GNN代码chapter5|GCN分析TODO改代码得到的结论chapter6|GraphSage分析TODO去今年刚出就买了.一查豆瓣评分比我想的还低(我这种小白都能看出一些错误),有1说1对于入门还是可以的,至少能知道GNN大概的发展路线,如图卷积→\rightarrow→GCN→\rightarrow→GNN等.如果小白直接上手GNN啥的,连图滤波,空域频域等概念都不知道,也只能
- 深度学习的应用场景及常用技术
eso1983
深度学习
深度学习作为机器学习的一个重要分支,在众多领域都有广泛的应用,以下是一些主要的应用场景及常用技术。1.应用场景1.计算机视觉图像分类描述:对图像中的内容进行分类,识别出图像中物体所属的类别。例如,在安防领域,通过对监控摄像头拍摄的图像进行分类,判断是否有可疑人员或物品出现;在电商领域,对商品图片进行分类,方便用户搜索和筛选商品。示例:识别图片中的动物是猫还是狗,或者判断一张图片是风景照还是人物照。
- 深入解析:Python中的决策树与随机森林
小鹿( ﹡ˆoˆ﹡ )
Pythonpython决策树随机森林Python
在这个数据驱动的时代,机器学习技术已经成为许多企业和研究机构不可或缺的一部分。其中,决策树和随机森林作为两种强大的算法,在分类和回归任务中表现尤为出色。本文将带领大家深入了解这两种算法在Python中的实现,从基础到实战,逐步揭开它们的神秘面纱。引言决策树是一种非常直观的预测模型,它通过一系列规则对数据进行分割,最终形成树状结构。而随机森林则是基于决策树的一种集成学习方法,通过构建多个决策树并取其
- HTML5 MathML用法详解
天涯学馆
大前端&移动端全栈架构html5前端html
目录MathML的基本结构MathML元素分类浏览器支持与渲染MathML与LaTeXMathML示例MathML是一种标记语言,用于在网页中表示数学公式和符号。它为数学、科学和技术出版物提供了标准化的、结构化的表示方式,使得复杂的数学表达式能够被浏览器准确解析和渲染。MathML的基本结构MathML文档由元素包裹,内部包含数学公式的所有组成部分。一个简单的MathML公式示例:
- 使用Scikit-learn实现支持向量机分类器
清水白石008
pythonPython题库scikit-learn支持向量机python
使用Scikit-learn实现支持向量机分类器引言支持向量机(SupportVectorMachine,SVM)是一种强大的监督学习算法,广泛应用于分类和回归任务。SVM的核心思想是通过寻找一个最佳的超平面来分隔不同类别的数据点。本文将详细介绍如何使用Python的Scikit-learn库实现一个支持向量机分类器,包括数据准备、模型训练、评估和可视化等步骤。1.支持向量机的基本原理支持向量机的
- flutter组件分类
明致成
flutter航旅记录flutter前端
flutter组件分类一、基础组件文本样式Text:用于显示简单样式文本textAlign:文本的对齐方式maxLines:指定文本显示的最大行数overflow:指定文本截断方式textScaleFactor:文本缩放因子,主要是用于系统字体大小设置改变时对Flutter应用字体进行全局调整TextStyle:指定文本显示的样式height:行高因子,具体的行高=fontSize*heightf
- matlab神经网络遥感反演,基于BP神经网络的盐渍土盐分遥感反演模型研究
老许的花开
matlab神经网络遥感反演
采用遥感技术和BP神经网络技术,结合野外实测的盐渍土光谱特征和实验室化验的土壤含盐数据,对盐渍土盐分的遥感反演进行了模型的设计与编程实现。BP神经网络模型的预测精度在62.5%,明显高于传统统计模型的预测精度,表明BP神经网络能较好地模拟土壤含盐量与光谱数据之间的关系,可用于建立土壤盐分遥感反演模型。更多还原【Abstract】Theresearchonsalinityinversionfromr
- 大语言模型丨ChatGPT-4o深度科研应用、论文与项目撰写、数据分析、机器学习、深度学习及AI绘图(BP神经网络、支持向量机、决策树、随机森林、变量降维与特征选择、群优化算法等)
赵钰老师
ChatGPTpython人工智能语言模型深度学习数据分析chatgpt机器学习随机森林
目录第一章、2024大语言模型最新进展与ChatGPT各模型第二章、ChatGPT-4o提示词使用方法与高级技巧(最新加入思维链及逆向工程及GPTs)第三章、ChatGPT4-4o助力日常生活、学习与工作第四章、基于ChatGPT-4o课题申报、论文选题及实验方案设计第五章、基于ChatGPT-4o信息检索、总结分析、论文写作与投稿、专利idea构思与交底书的撰写第六章、ChatGPT-4o编程入
- 爬虫基础(六)代理简述
A.sir啊
网络爬虫必备知识点网络协议爬虫python
目录一、什么是代理二、基本原理三、代理分类一、什么是代理爬虫一般是自动化的,当我们自动运行时爬虫自动抓取数据,但一会就出现了错误:如,您的访问频率过高!这是因为网站的反爬措施,如果频繁访问,则会被禁止,即封IP为解决这种情况,我们需要把自己的IP伪装一下,即代理所谓代理,就是代理服务器。二、基本原理正常来说:客户发送请求给服务器然后服务器将响应传给客户而代理的话:相当于在客户和服务器之间加一个代理
- 【python】在【机器学习】与【数据挖掘】中的应用:从基础到【AI大模型】
小李很执着
杂乱无章机器学习数据挖掘python人工智能语言模型
目录一、Python在数据挖掘中的应用1.1数据预处理数据清洗数据变换数据归一化高级预处理技术1.2特征工程特征选择特征提取特征构造二、Python在机器学习中的应用2.1监督学习分类回归2.2非监督学习聚类降维三、Python在深度学习中的应用3.1深度学习框架TensorFlowPyTorch四、Python在AI大模型中的应用4.1大模型简介4.2GPT-4o实例五、实例验证5.1数据集介绍
- 【3D目标检测】YOLO3D 基于图像的3D目标检测算法
BILLY BILLY
YOLOv8系列3d目标检测YOLO
参考文档:https://ruhyadi.github.io/project/computer-vision/yolo3d/代码:https://github.com/ruhyadi/yolo3d-lightning本次分享将会从以下四个方面展开:物体检测模型中的算法选择单目摄像头下的物体检测神经网络训练预测参数的设计模型训练与距离测算1.物体检测模型中的算法选择物体检测(ObjectDetect
- Encoder-only decoder-only encoder-decoder大模型的区别
阿牛牛阿
aiopencv人工智能AIGCchatgpt
1.Encoder-Only架构-定义:仅包含编码器部分,主要用于处理输入数据而不生成输出。-适用任务:文本分类、情感分析、命名实体识别等。-优点:能够更好地理解输入文本的语义和上下文信息,适合需要特征提取的任务。-缺点:无法直接生成文本输出。-代表模型:BERT、RoBERTa、ALBERT等。2.Decoder-Only架构-定义:仅包含解码器部分,通常用于序列生成任务。-适用任务:文本生成、
- 自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测,对预测结果计算精确度和召回率及F1分数
qwe352633
python
importtorchimportnumpyasnpimporttorch.nnasnnfromsklearn.metricsimportaccuracy_score,precision_score,recall_score,f1_scoredata=[[-0.5,7.7],[1.8,98.5],[0.9,57.8],[0.4,39.2],[-1.4,-15.7],[-1.4,-37.3],[-1
- 步进电机的型号和分类
LS_learner
嵌入式嵌入式硬件
步进电机的型号和分类通常根据其尺寸、结构、相数、步距角等参数来区分。以下是一些常见的步进电机型号、分类方法以及如何识别它们的指南:一、常见步进电机型号步进电机的型号通常由厂家命名,但也有一些通用的命名规则。以下是一些常见的型号系列:1.NEMA标准系列NEMA(美国电气制造商协会)标准是步进电机尺寸的通用标准,常见的NEMA型号包括:NEMA8:机座尺寸20mmx20mm,适合小型设备。NEMA1
- Vue全流程--Vue2插槽
不清参
vue.jsjavascript前端
作用让父组件可以向子组件指定位置插入html结构,也是一种组件间通信的方式,适用于父组件===>子组件。分类默认插槽、具名插槽、作用域插槽使用方式1.默认插槽:让子组件以不同的内容形式或者格式展现出来父组件{{g}}importCategoryfrom'./components/Category'exportdefault{name:'App',components:{Category},data
- 自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测,对预测结果计算精确度和召回率及F1分数
〖是♂我〗
python
代码:importtorchimportnumpyasnpimporttorch.nnasnnfromsklearn.metricsimportaccuracy_score,precision_score,recall_score,f1_score#定义数据:x_data是特征,y_data是标签(目标值)data=[[-0.5,7.7],[1.8,98.5],[0.9,57.8],[0.4,39
- Java核心与应用:Java异常处理全解析
星核日记
《Java核心与应用》javapython开发语言
Java核心与应用:Java异常处理全解析“程序的世界里,异常是不可避免的。但优秀的开发者,总能优雅地处理它们。”——凌云学习目标✅掌握Java异常分类体系与继承结构✅理解Checked/Unchecked异常的设计哲学✅熟练使用异常链进行根因分析✅掌握try-with-resources的底层原理✅设计符合规范的异常体系1.Java异常处理概述在Java开发中,异常处理是保证程序健壮性的重要手段
- 《解锁AI黑科技:数据分类聚类与可视化》
人工智能深度学习数据挖掘
在当今数字化时代,数据如潮水般涌来,如何从海量数据中提取有价值的信息,成为了众多领域面临的关键挑战。人工智能(AI)技术的崛起,为解决这一难题提供了强大的工具。其中,能够实现数据分类与聚类,并以可视化形式展现的AI技术,正逐渐成为各行业数据分析和决策的核心力量。数据分类与聚类:AI的核心技能数据分类是将数据划分到预先定义好的类别中,就像把图书馆里的书籍按照不同学科分类摆放,方便读者查找。比如在垃圾
- 怎么样使用计算机新建文件,电脑初学者如何新建和使用文件夹
clowntom
怎么样使用计算机新建文件
新手用电脑的第一步就是如何新建和使用文件夹?建立好了文件夹以后,就可以将文件进行分类管理了。文件夹就象书本、杂志的封面、外套,它也有相应的文件名,只要打开选中的文件夹项目,就可以找到存放在其中的文件。一个文件夹可以同时存放多个文件夹和多个文件。首先我们在我的文档上面建立一个新的文件夹。步骤一、在桌面上按光标键选择切换到“我的文档”项目,按回车键打开我的文档项目。按数字键盘的4或6键切换到“桌面列表
- 【小白学AI系列】NLP 核心知识点(三)Word2Vec
Blankspace空白
人工智能自然语言处理word2vec
Word2Vec定义:Word2Vec是一种将单词转化为向量的技术,基于神经网络模型,它能够将单词的语义关系通过向量空间的距离和方向进行表示。通过Word2Vec,我们可以将单词从一个离散的符号转化为一个稠密的向量(一般是高维的),并且能够捕捉到单词之间的语义关系和相似性。历史来源:Word2Vec由TomasMikolov等人于2013年在谷歌提出,它迅速成为了词向量表示(wordembeddi
- 计算网络--地址结构
IT艺术家-rookie
计算机网络网络
IP作用:标识了网络流量的来源与去向分类ipv4(32位)ipv6(128位)表示方法点分四组表示法(ipv4)(点分十进制表示法)例:165.195.130.107(ipv4)其中的每个数字范围[0,255]–>2^8个数四个十六进制数(ipv6)例:5f05:2000:80ad:5800:0058:0800:2023:1d71块(字段):其中每个冒号分割的部分简化表示一个块的前导零必须压缩,用
- 探讨实时操作系统(RTOS)在嵌入式设备中的调度机制与效能优化
借口
热点资讯
博客主页:借口的CSDN主页⏩文章专栏:《热点资讯》探讨实时操作系统(RTOS)在嵌入式设备中的调度机制与效能优化探讨实时操作系统(RTOS)在嵌入式设备中的调度机制与效能优化探讨实时操作系统(RTOS)在嵌入式设备中的调度机制与效能优化引言实时操作系统概述定义应用场景调度机制分类常见算法死锁预防效能优化减少上下文切换开销内存管理功耗控制成功案例分析自动驾驶车辆智能家居面临的问题及解决方案系统复杂
- 运营定义与分类
Fadeland
学习产品运营媒体新媒体运营
1、互联网运营岗定义从广义角度说,一切围绕着网站产品进行人工干预的工作,都叫做运营。运营,就是公司领导者,带领员工一起做出产品,并且通过产品为用户提供价值。所以从广义角度去看运营的概念,只要你去一个公司上班,那么你就是整个公司运营的一份子。每一个有具体分工的人组合在一起,共同运营了一家公司。但我们通常提到的运营,指的都是狭义的运营,那什么是狭义的运营呢?狭义来讲,我们常提到的各种运营就是要把运营细
- 后端树结构分类数据模型如何设计
My LQS
历史经验篇分类数据库java
树形结构在后端系统中非常常见,特别是分类管理场景,例如商品分类、组织架构等。本文将以给定的数据库表为例,探讨如何设计树结构分类数据模型及其优点。一、数据表设计1.分类节点表CREATETABLE`product_classification_node`(`id`bigint(20)NOTNULLAUTO_INCREMENTCOMMENT'主键(分类ID)',`classification_name
- pytorch实现简单的情感分析算法
纠结哥_Shrek
pytorch人工智能python
在PyTorch中实现中文情感分析算法通常涉及以下几个步骤:数据预处理、模型定义、训练和评估。下面是一个简单的实现示例,使用LSTM模型进行中文情感分析。1.数据预处理首先,我们需要对中文文本进行分词,并将文本转换为数值形式(如词向量)。可以使用jieba进行分词,并使用torchtext或自定义的词汇表将词语转换为索引。importtorchimporttorch.nnasnnimporttor
- pytorch基于 Transformer 预训练模型的方法实现词嵌入(tiansz/bert-base-chinese)
纠结哥_Shrek
pytorchtransformerbert
以下是一个完整的词嵌入(WordEmbedding)示例代码,使用modelscope下载tiansz/bert-base-chinese模型,并通过transformers加载模型,获取中文句子的词嵌入。frommodelscope.hub.snapshot_downloadimportsnapshot_downloadfromtransformersimportBertTokenizer,Be
- pytorch基于GloVe实现的词嵌入
纠结哥_Shrek
pytorch人工智能python
PyTorch实现GloVe(GlobalVectorsforWordRepresentation)的完整代码,使用中文语料进行训练,包括共现矩阵构建、模型定义、训练和测试。1.GloVe介绍基于词的共现信息(不像Word2Vec使用滑动窗口预测)适合较大规模的数据(比Word2Vec更稳定)学习出的词向量能捕捉语义信息(如类比关系)importtorchimporttorch.nnasnnimp
- PyTorch中的unsqueeze函数(自用)
黯岚岚岚岚岚
pytorchpytorchpython经验分享
前言最近在学习swin_transformer的模型搭建,其中用到了广播机制,在理解广播机制的过程中发现自己对torch.unsqueeze()函数比较困惑,所以做了个小实验帮助自己理解。问题阐述我们都知道,torch.unsqueeze()函数的作用是拓展张量维度,那么在不同位置拓展之后,原数据是怎样排列的呢?下面进入实验部分。实验>>>importtorch>>>>>>a=torch.Tens
- ViewController添加button按钮解析。(翻译)
张亚雄
c
<div class="it610-blog-content-contain" style="font-size: 14px"></div>// ViewController.m
// Reservation software
//
// Created by 张亚雄 on 15/6/2.
- mongoDB 简单的增删改查
开窍的石头
mongodb
在上一篇文章中我们已经讲了mongodb怎么安装和数据库/表的创建。在这里我们讲mongoDB的数据库操作
在mongo中对于不存在的表当你用db.表名 他会自动统计
下边用到的user是表明,db代表的是数据库
添加(insert):
- log4j配置
0624chenhong
log4j
1) 新建java项目
2) 导入jar包,项目右击,properties—java build path—libraries—Add External jar,加入log4j.jar包。
3) 新建一个类com.hand.Log4jTest
package com.hand;
import org.apache.log4j.Logger;
public class
- 多点触摸(图片缩放为例)
不懂事的小屁孩
多点触摸
多点触摸的事件跟单点是大同小异的,上个图片缩放的代码,供大家参考一下
import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnTouchListener
- 有关浏览器窗口宽度高度几个值的解析
换个号韩国红果果
JavaScripthtml
1 元素的 offsetWidth 包括border padding content 整体的宽度。
clientWidth 只包括内容区 padding 不包括border。
clientLeft = offsetWidth -clientWidth 即这个元素border的值
offsetLeft 若无已定位的包裹元素
- 数据库产品巡礼:IBM DB2概览
蓝儿唯美
db2
IBM DB2是一个支持了NoSQL功能的关系数据库管理系统,其包含了对XML,图像存储和Java脚本对象表示(JSON)的支持。DB2可被各种类型的企 业使用,它提供了一个数据平台,同时支持事务和分析操作,通过提供持续的数据流来保持事务工作流和分析操作的高效性。 DB2支持的操作系统
DB2可应用于以下三个主要的平台:
工作站,DB2可在Linus、Unix、Windo
- java笔记5
a-john
java
控制执行流程:
1,true和false
利用条件表达式的真或假来决定执行路径。例:(a==b)。它利用条件操作符“==”来判断a值是否等于b值,返回true或false。java不允许我们将一个数字作为布尔值使用,虽然这在C和C++里是允许的。如果想在布尔测试中使用一个非布尔值,那么首先必须用一个条件表达式将其转化成布尔值,例如if(a!=0)。
2,if-els
- Web开发常用手册汇总
aijuans
PHP
一门技术,如果没有好的参考手册指导,很难普及大众。这其实就是为什么很多技术,非常好,却得不到普遍运用的原因。
正如我们学习一门技术,过程大概是这个样子:
①我们日常工作中,遇到了问题,困难。寻找解决方案,即寻找新的技术;
②为什么要学习这门技术?这门技术是不是很好的解决了我们遇到的难题,困惑。这个问题,非常重要,我们不是为了学习技术而学习技术,而是为了更好的处理我们遇到的问题,才需要学习新的
- 今天帮助人解决的一个sql问题
asialee
sql
今天有个人问了一个问题,如下:
type AD value
A  
- 意图对象传递数据
百合不是茶
android意图IntentBundle对象数据的传递
学习意图将数据传递给目标活动; 初学者需要好好研究的
1,将下面的代码添加到main.xml中
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http:/
- oracle查询锁表解锁语句
bijian1013
oracleobjectsessionkill
一.查询锁定的表
如下语句,都可以查询锁定的表
语句一:
select a.sid,
a.serial#,
p.spid,
c.object_name,
b.session_id,
b.oracle_username,
b.os_user_name
from v$process p, v$s
- mac osx 10.10 下安装 mysql 5.6 二进制文件[tar.gz]
征客丶
mysqlosx
场景:在 mac osx 10.10 下安装 mysql 5.6 的二进制文件。
环境:mac osx 10.10、mysql 5.6 的二进制文件
步骤:[所有目录请从根“/”目录开始取,以免层级弄错导致找不到目录]
1、下载 mysql 5.6 的二进制文件,下载目录下面称之为 mysql5.6SourceDir;
下载地址:http://dev.mysql.com/downl
- 分布式系统与框架
bit1129
分布式
RPC框架 Dubbo
什么是Dubbo
Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案。其核心部分包含: 远程通讯: 提供对多种基于长连接的NIO框架抽象封装,包括多种线程模型,序列化,以及“请求-响应”模式的信息交换方式。 集群容错: 提供基于接
- 那些令人蛋痛的专业术语
白糖_
springWebSSOIOC
spring
【控制反转(IOC)/依赖注入(DI)】:
由容器控制程序之间的关系,而非传统实现中,由程序代码直接操控。这也就是所谓“控制反转”的概念所在:控制权由应用代码中转到了外部容器,控制权的转移,是所谓反转。
简单的说:对象的创建又容器(比如spring容器)来执行,程序里不直接new对象。
Web
【单点登录(SSO)】:SSO的定义是在多个应用系统中,用户
- 《给大忙人看的java8》摘抄
braveCS
java8
函数式接口:只包含一个抽象方法的接口
lambda表达式:是一段可以传递的代码
你最好将一个lambda表达式想象成一个函数,而不是一个对象,并记住它可以被转换为一个函数式接口。
事实上,函数式接口的转换是你在Java中使用lambda表达式能做的唯一一件事。
方法引用:又是要传递给其他代码的操作已经有实现的方法了,这时可以使
- 编程之美-计算字符串的相似度
bylijinnan
java算法编程之美
public class StringDistance {
/**
* 编程之美 计算字符串的相似度
* 我们定义一套操作方法来把两个不相同的字符串变得相同,具体的操作方法为:
* 1.修改一个字符(如把“a”替换为“b”);
* 2.增加一个字符(如把“abdd”变为“aebdd”);
* 3.删除一个字符(如把“travelling”变为“trav
- 上传、下载压缩图片
chengxuyuancsdn
下载
/**
*
* @param uploadImage --本地路径(tomacat路径)
* @param serverDir --服务器路径
* @param imageType --文件或图片类型
* 此方法可以上传文件或图片.txt,.jpg,.gif等
*/
public void upload(String uploadImage,Str
- bellman-ford(贝尔曼-福特)算法
comsci
算法F#
Bellman-Ford算法(根据发明者 Richard Bellman 和 Lester Ford 命名)是求解单源最短路径问题的一种算法。单源点的最短路径问题是指:给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。有时候这种算法也被称为 Moore-Bellman-Ford 算法,因为 Edward F. Moore zu 也为这个算法的发展做出了贡献。
与迪科
- oracle ASM中ASM_POWER_LIMIT参数
daizj
ASMoracleASM_POWER_LIMIT磁盘平衡
ASM_POWER_LIMIT
该初始化参数用于指定ASM例程平衡磁盘所用的最大权值,其数值范围为0~11,默认值为1。该初始化参数是动态参数,可以使用ALTER SESSION或ALTER SYSTEM命令进行修改。示例如下:
SQL>ALTER SESSION SET Asm_power_limit=2;
- 高级排序:快速排序
dieslrae
快速排序
public void quickSort(int[] array){
this.quickSort(array, 0, array.length - 1);
}
public void quickSort(int[] array,int left,int right){
if(right - left <= 0
- C语言学习六指针_何谓变量的地址 一个指针变量到底占几个字节
dcj3sjt126com
C语言
# include <stdio.h>
int main(void)
{
/*
1、一个变量的地址只用第一个字节表示
2、虽然他只使用了第一个字节表示,但是他本身指针变量类型就可以确定出他指向的指针变量占几个字节了
3、他都只存了第一个字节地址,为什么只需要存一个字节的地址,却占了4个字节,虽然只有一个字节,
但是这些字节比较多,所以编号就比较大,
- phpize使用方法
dcj3sjt126com
PHP
phpize是用来扩展php扩展模块的,通过phpize可以建立php的外挂模块,下面介绍一个它的使用方法,需要的朋友可以参考下
安装(fastcgi模式)的时候,常常有这样一句命令:
代码如下:
/usr/local/webserver/php/bin/phpize
一、phpize是干嘛的?
phpize是什么?
phpize是用来扩展php扩展模块的,通过phpi
- Java虚拟机学习 - 对象引用强度
shuizhaosi888
JAVA虚拟机
本文原文链接:http://blog.csdn.net/java2000_wl/article/details/8090276 转载请注明出处!
无论是通过计数算法判断对象的引用数量,还是通过根搜索算法判断对象引用链是否可达,判定对象是否存活都与“引用”相关。
引用主要分为 :强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Wea
- .NET Framework 3.5 Service Pack 1(完整软件包)下载地址
happyqing
.net下载framework
Microsoft .NET Framework 3.5 Service Pack 1(完整软件包)
http://www.microsoft.com/zh-cn/download/details.aspx?id=25150
Microsoft .NET Framework 3.5 Service Pack 1 是一个累积更新,包含很多基于 .NET Framewo
- JAVA定时器的使用
jingjing0907
javatimer线程定时器
1、在应用开发中,经常需要一些周期性的操作,比如每5分钟执行某一操作等。
对于这样的操作最方便、高效的实现方式就是使用java.util.Timer工具类。
privatejava.util.Timer timer;
timer = newTimer(true);
timer.schedule(
newjava.util.TimerTask() { public void run()
- Webbench
流浪鱼
webbench
首页下载地址 http://home.tiscali.cz/~cz210552/webbench.html
Webbench是知名的网站压力测试工具,它是由Lionbridge公司(http://www.lionbridge.com)开发。
Webbench能测试处在相同硬件上,不同服务的性能以及不同硬件上同一个服务的运行状况。webbench的标准测试可以向我们展示服务器的两项内容:每秒钟相
- 第11章 动画效果(中)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- windows下制作bat启动脚本.
sanyecao2314
javacmd脚本bat
java -classpath C:\dwjj\commons-dbcp.jar;C:\dwjj\commons-pool.jar;C:\dwjj\log4j-1.2.16.jar;C:\dwjj\poi-3.9-20121203.jar;C:\dwjj\sqljdbc4.jar;C:\dwjj\voucherimp.jar com.citsamex.core.startup.MainStart
- Java进行RSA加解密的例子
tomcat_oracle
java
加密是保证数据安全的手段之一。加密是将纯文本数据转换为难以理解的密文;解密是将密文转换回纯文本。 数据的加解密属于密码学的范畴。通常,加密和解密都需要使用一些秘密信息,这些秘密信息叫做密钥,将纯文本转为密文或者转回的时候都要用到这些密钥。 对称加密指的是发送者和接收者共用同一个密钥的加解密方法。 非对称加密(又称公钥加密)指的是需要一个私有密钥一个公开密钥,两个不同的密钥的
- Android_ViewStub
阿尔萨斯
ViewStub
public final class ViewStub extends View
java.lang.Object
android.view.View
android.view.ViewStub
类摘要: ViewStub 是一个隐藏的,不占用内存空间的视图对象,它可以在运行时延迟加载布局资源文件。当 ViewSt