第一章 Kafka 配置部署及SASL_PLAINTEXT安全认证
第二章 Spring Boot 整合 Kafka消息队列 生产者
第三章 Spring Boot 整合 Kafka消息队列 消息者(待续)
Kafka 是一个消息队列产品,基于Topic partitions的设计,能达到非常高的消息发送处理性能。本文主是基于Spirng Boot封装了Apache 的Kafka-client,用于在Spring Boot 项目里快速集成kafka。
Apache Kafka是分布式发布-订阅消息系统。
它最初由LinkedIn公司开发,之后成为Apache项目的一部分。
Kafka是一种快速、可扩展的、设计内在就是分布式的,分区的和可复制的提交日志服务。
引入需要依赖的jar包,引入POM文件
org.springframework.kafka
spring-kafka
spring:
custom:
kafka:
username: admin
password: admin-secret
partitions: 1
enable-auto-commit: false
batch-listener: false
bootstrap-servers:
- 192.168.1.95:9092
启动类名 EnableAutoKafka
package com.cdkjframework.kafka.producer.annotation;
import com.cdkjframework.kafka.producer.config.KafkaMarkerConfiguration;
import org.springframework.context.annotation.Import;
import java.lang.annotation.*;
/**
* @ProjectName: cdkj-framework
* @Package: com.cdkjframework.kafka.producer.annotation
* @ClassName: EnableAutoKafka
* @Description: Kafka自动启动类
* @Author: xiaLin
* @Date: 2023/7/18 9:20
* @Version: 1.0
*/
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Import({KafkaMarkerConfiguration.class})
public @interface EnableAutoKafka {
}
org.springframework.boot.autoconfigure.EnableAutoConfiguration=\
com.cdkjframework.kafka.producer.config.KafkaAutoConfiguration
package com.cdkjframework.kafka.producer.config;
import lombok.Data;
import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.context.annotation.Configuration;
import java.util.List;
/**
* @ProjectName: cdkj-framework
* @Package: com.cdkjframework.kafka.producer.config;
* @ClassName: KafakConfig
* @Description: Kafak 配置
* @Author: xiaLin
* @Version: 1.0
*/
@Data
@Configuration
@ConfigurationProperties(prefix = "spring.custom.kafka")
public class KafkaConfig {
/**
* 服务列表
*/
private List bootstrapServers;
/**
* 主题
*/
private List topics;
/**
* 账号
*/
private String username;
/**
* 密码
*/
private String password;
/**
* 延迟为1毫秒
*/
private Integer linger = 1;
/**
* 批量大小
*/
private Integer batchSize = 16384;
/**
* 重试次数,0为不启用重试机制
*/
private Integer retries = 0;
/**
* 人锁
*/
private Integer maxBlock = 6000;
/**
* acks
*/
private String acks = "1";
/**
* security.providers
*/
private String securityProviders;
/**
* 启用自动提交
*/
private boolean enableAutoCommit = true;
/**
* 会话超时
*/
private String sessionTimeout = "5000";
/**
* 会话超时
*/
private Integer maxPollInterval = 10000;
/**
* 组ID
*/
private String groupId = "defaultGroup";
/**
* 最大投票记录
*/
private Integer maxPollRecords = 1;
/**
* 并发性
*/
private Integer concurrency = 3;
/**
* 拉取超时时间
*/
private Integer pollTimeout = 60000;
/**
* 批量监听
*/
private boolean batchListener = false;
/**
* 副本数量
*/
private String sort = "1";
/**
* 分区数
*/
private Integer partitions = 3;
/**
* 消费者默认支持解压
*/
private String compressionType = "none";
/**
* offset偏移量规则设置
*/
private String autoOffsetReset = "earliest";
/**
* 自动提交的频率
*/
private Integer autoCommitInterval = 100;
/**
* 生产者可以使用的总内存字节来缓冲等待发送到服务器的记录
*/
private Integer bufferMemory = 33554432;
/**
* 消息的最大大小限制
*/
private Integer maxRequestSize = 1048576;
}
package com.cdkjframework.kafka.producer.config;
import com.cdkjframework.kafka.producer.ProducerConfiguration;
import com.cdkjframework.kafka.producer.util.ProducerUtils;
import lombok.RequiredArgsConstructor;
import org.springframework.boot.autoconfigure.AutoConfigureAfter;
import org.springframework.boot.autoconfigure.ImportAutoConfiguration;
import org.springframework.boot.autoconfigure.condition.ConditionalOnBean;
import org.springframework.boot.autoconfigure.condition.ConditionalOnMissingBean;
import org.springframework.boot.autoconfigure.web.reactive.function.client.WebClientAutoConfiguration;
import org.springframework.boot.context.properties.EnableConfigurationProperties;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Lazy;
/**
* @ProjectName: cdkj-framework
* @Package: com.cdkjframework.kafka.producer.config
* @ClassName: KafkaAutoConfiguration
* @Description: kafka 自动配置
* @Author: xiaLin
* @Date: 2023/7/18 9:21
* @Version: 1.0
*/
@Lazy(false)
@RequiredArgsConstructor
@Configuration(proxyBeanMethods = false)
@EnableConfigurationProperties(KafkaConfig.class)
@AutoConfigureAfter({WebClientAutoConfiguration.class})
@ImportAutoConfiguration(ProducerConfiguration.class)
@ConditionalOnBean(KafkaMarkerConfiguration.Marker.class)
public class KafkaAutoConfiguration {
/**
* 读取配置文件
*/
private final KafkaConfig kafkaConfig;
/**
* kafka topic 启动触发器
*
* @return 返回结果
*/
@Bean(initMethod = "kafkaAdmin")
@ConditionalOnMissingBean
public TopicConfig kafkaTopic() {
TopicConfig trigger = new TopicConfig(kafkaConfig);
return trigger;
}
/**
* kafka 配置 启动触发器
*
* @return 返回结果
*/
@Bean(initMethod = "start")
@ConditionalOnMissingBean
public ProducerUtils Producer() {
return new ProducerUtils();
}
}
package com.cdkjframework.kafka.producer.config;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.kafka.annotation.EnableKafka;
/**
* @ProjectName: cdkj-framework
* @Package: com.cdkjframework.kafka.producer.config
* @ClassName: KafkaMarkerConfiguration
* @Description: Kafka标记配置
* @Author: xiaLin
* @Date: 2023/12/6 9:45
* @Version: 1.0
*/
@EnableKafka
@Configuration(proxyBeanMethods = false)
public class KafkaMarkerConfiguration {
@Bean
public Marker kafkaMarker() {
return new Marker();
}
public static class Marker {
}
}
package com.cdkjframework.kafka.producer.config;
import com.cdkjframework.constant.IntegerConsts;
import org.apache.kafka.clients.admin.AdminClientConfig;
import org.apache.kafka.clients.admin.NewTopic;
import org.springframework.kafka.core.KafkaAdmin;
import java.util.HashMap;
import java.util.Map;
/**
* @ProjectName: cdkj-framework
* @Package: com.cdkjframework.kafka.producer.config
* @ClassName: TopicConfig
* @Description: topic配置
* @Author: xiaLin
* @Version: 1.0
*/
public class TopicConfig {
/**
* 配置
*/
private final KafkaConfig kafkaConfig;
/**
* 构造函数
*/
public TopicConfig(KafkaConfig kafkaConfig) {
this.kafkaConfig = kafkaConfig;
}
/**
* 定义一个KafkaAdmin的bean,可以自动检测集群中是否存在topic,不存在则创建
*/
public KafkaAdmin kafkaAdmin() {
Map configs = new HashMap<>(IntegerConsts.ONE);
// 指定多个kafka集群多个地址,例如:192.168.2.11,9092,192.168.2.12:9092,192.168.2.13:9092
configs.put(AdminClientConfig.BOOTSTRAP_SERVERS_CONFIG, kafkaConfig.getBootstrapServers());
configs.put(AdminClientConfig.BOOTSTRAP_SERVERS_CONFIG, kafkaConfig.getBootstrapServers());
return new KafkaAdmin(configs);
}
}
生产者配置类 ProducerConfiguration
package com.cdkjframework.kafka.producer;
import com.cdkjframework.kafka.producer.config.KafkaConfig;
import com.cdkjframework.kafka.producer.util.ProducerUtils;
import com.cdkjframework.util.tool.StringUtils;
import lombok.RequiredArgsConstructor;
import org.apache.kafka.clients.CommonClientConfigs;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.common.config.SaslConfigs;
import org.apache.kafka.common.security.auth.SecurityProtocol;
import org.apache.kafka.common.serialization.StringSerializer;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.kafka.core.DefaultKafkaProducerFactory;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.kafka.core.ProducerFactory;
import javax.annotation.Resource;
import java.util.HashMap;
import java.util.Map;
/**
* @ProjectName: cdkj-framework
* @Package: com.cdkjframework.kafka.producer
* @ClassName: ProducerConfiguration
* @Description: 设置@Configuration、@EnableKafka两个注解,声明Config并且打开KafkaTemplate能力。
* @Author: xiaLin
* @Version: 1.0
*/
@Configuration
@RequiredArgsConstructor
public class ProducerConfiguration {
/**
* 配置
*/
private final KafkaConfig kafkaConfig;
/**
* JAAS配置
*/
private String JAAS_CONFIG = "org.apache.kafka.common.security.plain.PlainLoginModule required username=%s password=%s;";
/**
* Producer Template 配置
*/
@Bean(name = "kafkaTemplate")
public KafkaTemplate kafkaTemplate() {
return new KafkaTemplate<>(producerFactory());
}
/**
* Producer 工厂配置
*/
@Bean(name = "producerFactory")
public ProducerFactory producerFactory() {
return new DefaultKafkaProducerFactory<>(producerConfigs());
}
/**
* Producer 参数配置
*/
public Map producerConfigs() {
Map props = new HashMap<>();
// 指定多个kafka集群多个地址
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, kafkaConfig.getBootstrapServers());
// 重试次数,0为不启用重试机制
props.put(ProducerConfig.RETRIES_CONFIG, kafkaConfig.getRetries());
//同步到副本, 默认为1
// acks=0 把消息发送到kafka就认为发送成功
// acks=1 把消息发送到kafka leader分区,并且写入磁盘就认为发送成功
// acks=all 把消息发送到kafka leader分区,并且leader分区的副本follower对消息进行了同步就任务发送成功
props.put(ProducerConfig.ACKS_CONFIG, kafkaConfig.getAcks());
// 生产者空间不足时,send()被阻塞的时间,默认60s
props.put(ProducerConfig.MAX_BLOCK_MS_CONFIG, kafkaConfig.getMaxBlock());
// security.providers
props.put(ProducerConfig.SECURITY_PROVIDERS_CONFIG, kafkaConfig.getSecurityProviders());
// 控制批处理大小,单位为字节
props.put(ProducerConfig.BATCH_SIZE_CONFIG, kafkaConfig.getBatchSize());
// 批量发送,延迟为1毫秒,启用该功能能有效减少生产者发送消息次数,从而提高并发量
props.put(ProducerConfig.LINGER_MS_CONFIG, kafkaConfig.getLinger());
// 生产者可以使用的总内存字节来缓冲等待发送到服务器的记录
props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, kafkaConfig.getBufferMemory());
// 消息的最大大小限制,也就是说send的消息大小不能超过这个限制, 默认1048576(1MB)
props.put(ProducerConfig.MAX_REQUEST_SIZE_CONFIG, kafkaConfig.getMaxRequestSize());
// 键的序列化方式
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
// 值的序列化方式
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
// 压缩消息,支持四种类型,分别为:none、lz4、gzip、snappy,默认为none。
// 消费者默认支持解压,所以压缩设置在生产者,消费者无需设置。
props.put(ProducerConfig.COMPRESSION_TYPE_CONFIG, kafkaConfig.getCompressionType());
props.put(ProducerConfig.MAX_IN_FLIGHT_REQUESTS_PER_CONNECTION, kafkaConfig.getPartitions());
// 账号密码
if (StringUtils.isNotNullAndEmpty(kafkaConfig.getUsername()) &&
StringUtils.isNotNullAndEmpty(kafkaConfig.getPassword())) {
props.put(CommonClientConfigs.SECURITY_PROTOCOL_CONFIG, SecurityProtocol.SASL_PLAINTEXT.name);
String SASL_MECHANISM = "PLAIN";
props.put(SaslConfigs.SASL_MECHANISM, SASL_MECHANISM);
props.put(SaslConfigs.SASL_JAAS_CONFIG, String.format(JAAS_CONFIG, kafkaConfig.getUsername(), kafkaConfig.getPassword()));
}
return props;
}
}
生产者端 ProducerUtils
package com.cdkjframework.kafka.producer.util;
import com.cdkjframework.constant.IntegerConsts;
import com.cdkjframework.util.log.LogUtils;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.stereotype.Service;
import org.springframework.util.concurrent.ListenableFutureCallback;
import javax.annotation.Resource;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;
/**
* @ProjectName: cdkj-framework
* @Package: com.cdkjframework.kafka.producer.util
* @ClassName: ProducerUtils
* @Description: 生产工具
* @Author: xiaLin
* @Version: 1.0
*/
public class ProducerUtils {
/**
* 日志
*/
private static LogUtils logUtils = LogUtils.getLogger(ProducerUtils.class);
/**
* 模板
*/
private static KafkaTemplate kafkaTemplate;
/**
* 数据模板
*/
@Resource(name = "kafkaTemplate")
private KafkaTemplate template;
/**
* 初始化工具
*/
private void start() {
kafkaTemplate = template;
}
/**
* producer 同步方式发送数据
*
* @param topic topic名称
* @param message producer发送的数据
* @throws InterruptedException 异常信息
* @throws ExecutionException 异常信息
* @throws TimeoutException 异常信息
*/
public static void sendMessageSync(String topic, String message) throws InterruptedException, ExecutionException, TimeoutException {
kafkaTemplate.send(topic, message).get(IntegerConsts.TEN, TimeUnit.SECONDS);
}
/**
* producer 异步方式发送数据
*
* @param topic topic名称
* @param message producer发送的数据
*/
public static void sendMessageAsync(String topic, String message) {
kafkaTemplate.send(topic, message).addCallback(new ListenableFutureCallback() {
@Override
public void onFailure(Throwable throwable) {
logUtils.error("topic:" + topic + ",message:" + message);
logUtils.error(throwable, throwable.getMessage());
}
@Override
public void onSuccess(Object o) {
logUtils.info("topic:" + topic + ",发送成功");
}
});
}
/**
* producer 异步方式发送数据
*
* @param topic topic名称
* @param key key值
* @param message producer发送的数据
*/
public static void sendMessageAsync(String topic, String key, String message) {
kafkaTemplate.send(topic, key, message).addCallback(new ListenableFutureCallback() {
@Override
public void onFailure(Throwable throwable) {
logUtils.error("topic:" + topic + ",message:" + message);
logUtils.error(throwable, throwable.getMessage());
}
@Override
public void onSuccess(Object o) {
logUtils.info("topic:" + topic + ",发送成功");
}
});
}
}
例如:以上就是今天要讲的内容,本文仅仅简单介绍了 Spring Boot 集成消息生产者的封装,消息者待续。
相对应的开源项目欢迎访问:维基框架