- 机器学习的下一个前沿是因果推理吗?——探索机器学习的未来方向!
真智AI
人工智能机器学习
机器学习的进化:从预测到因果推理机器学习凭借强大的预测能力,已经彻底改变了多个行业。然而,要实现真正的突破,机器学习还需要克服实践和计算上的挑战,特别是在因果推理方面的应用。未来,因果推理或许将成为推动机器学习发展的新前沿。什么是因果推理,它如何与机器学习相关?如果你和我一样没有数学背景,你可能会好奇“因果推理”到底意味着什么?它与机器学习又有什么关系?当我刚开始学习机器学习时,第一次听到“因果推
- C++使用ZeroMQ和MessagePack实现简单又轻量级的RPC框架
特立独行的猫a
C++c++rpczeromqmessagepack
在现代的分布式系统中,远程过程调用(RPC)是一个非常重要的机制,它允许不同的服务或组件之间的通信,就像调用本地函数一样。本文将介绍如何使用ZeroMQ和MessagePack来构建一个轻量级的RPC框架,并提供一个简单的使用示例。ZeroMQ简介ZeroMQ(也称为0MQ)是一个高性能的异步消息库,旨在使用标准的、对等的传输协议实现消息的发送与接收。ZeroMQ的核心是提供一个消息队列,使得消息
- TK矩阵:提高多账号管理效率的利器
m0_74891046
矩阵
随着TikTok的火爆,越来越多的人开始利用这个平台进行内容创作和社交互动。无论是个人创作者、品牌方,还是营销公司,TikTok都提供了巨大的机会,但同时也带来了运营上的挑战,尤其是在管理多个账户时。每个账号的维护、内容发布、互动和数据分析,都需要耗费大量的时间和精力。TK矩阵是为了应对这些挑战而推出的一款工具,它为需要操作多个TikTok账号的用户提供了一种更高效、更安全的管理方式。基于云技术和
- RISC-V架构 vs ARM架构:硬件工程师的深度对比
ICGOODFIND1
risc-v架构arm开发
引言在嵌入式系统和处理器设计领域,RISC-V和ARM架构是两大热门选择。作为硬件工程师,了解这两种架构的优缺点以及适用场景,对于选择合适的处理器至关重要。本文将从技术特性、生态系统、开发成本和未来趋势等方面,深入对比RISC-V和ARM架构,帮助你在项目中做出更明智的决策。1.架构设计:精简vs成熟RISC-V:开源与模块化RISC-V是一种基于精简指令集计算(RISC)原则的开源指令集架构(I
- Java编程基础第二日
13.544
java开发语言编程小白
#变量的类型转换#1.自动类型转换所需满足的两个条件:1.两种数据的类型彼此兼容2.目标类型的取值范围要大于源类型的取值范围发生自动类型转换的情况主要有:整型之间,整型转化为float,其他类型转化为double类型。2.强制类型转换(需要声明)当数据类型并不满足自动类型转换的条件,但我们仍有进行转换的需求e.g:这时候就需要我们进行强制类型转换,即将byteb=num改为byteb=(byte)
- 书籍棱面广告投放的创新设计方法.zip
罗博深
本文还有配套的精品资源,点击获取简介:本创新方法将广告技术与传统书籍相结合,采用特殊印刷技术在书籍立体棱面上展示广告。通过材料、涂料的科技应用及光学原理,确保在不同光照下的视觉效果。设计考虑视觉吸引力、技术可行性及用户体验,可能结合AR技术增强互动性。需多方合作实现,包括印刷厂商、材料供应商和广告客户。此技术提供了新的广告展示平台,可能改变出版销售模式,并与数字营销结合。尽管面临技术挑战和成本问题
- Vue3项目基于Axios封装request请求
洛*璃
Vue.jsvue.js前端javascripttypescript
在Vue3的项目开发中,使用Axios进行HTTP请求是非常常见的作法,为了更方便开发者更高效的进行代码编写和项目的维护,可以通过再次封装Axios来实现。在本文中,博主将详细指导你如何在自己的Vue3项目中使用Axios二次封装request请求。1.安装Axios首先,确保我们的Vue3项目已经安装了Axios。如果尚未安装Axios,则可以定位到项目根目录下(与src目录同级),运行命令行:
- 智能编程新时代:DeepSeek加持下的开发工具革新
inscode_013
最新接入DeepSeek-V3模型,点击下载最新版本InsCodeAIIDE标题:智能编程新时代:DeepSeek加持下的开发工具革新在当今快速发展的科技领域,编程工具的智能化已经成为不可阻挡的趋势。随着人工智能技术的不断进步,开发者们迎来了前所未有的机遇和挑战。其中,集成DeepSeek模型的AI开发工具,正以其强大的功能和便捷的操作,引领着编程方式的革命性变革。本文将探讨这种创新工具的应用场景
- MobileMamba(2024 CV)
刘若里
论文阅读学习笔记网络计算机视觉人工智能
论文标题MobileMamba:LightweightMulti-ReceptiveVisualMambaNetwork论文作者HaoyangHe,JiangningZhang,YuxuanCai,HongxuChen,XiaobinHu,ZhenyeGan,YabiaoWang,ChengjieWang,YunshengWu,LeiXie发表日期2024年11月01日GB引用>HaoyangHe
- 智能化开发新时代:DeepSeek加持下的编程革命
MoonbeamOwl67
最新接入DeepSeek-V3模型,点击下载最新版本InsCodeAIIDE标题:智能化开发新时代:DeepSeek加持下的编程革命在当今快速发展的科技时代,软件开发已经成为推动社会进步的重要动力。然而,对于许多开发者而言,编写高质量的代码仍然是一项充满挑战的任务。从复杂的算法设计到繁琐的调试过程,每一个环节都需要耗费大量的时间和精力。而随着人工智能技术的迅猛发展,一种全新的编程方式正在悄然改变这
- YOLO V4(2020 CV)
刘若里
论文阅读YOLO人工智能计算机视觉学习笔记网络
论文标题YOLOv4:OptimalSpeedandAccuracyofObjectDetection论文作者AlexeyBochkovskiy,Chien-YaoWang,Hong-YuanMarkLiao发表日期2020年04月01日GB引用>AlexeyBochkovskiy,Chien-YaoWang,Hong-YuanMarkLiao.YOLOv4:OptimalSpeedandAccu
- AI学习指南RAG篇(14)-RAG企业级应用案例
俞兆鹏
AI学习指南ai
文章目录一、引言二、企业级RAG应用案例1.智能客服系统1.1案例背景1.2实现过程1.3示例代码2.知识管理平台2.1案例背景2.2实现过程3.企业级RAG系统建设3.1案例背景3.2实现过程三、总结一、引言RAG(Retrieval-AugmentedGeneration,检索增强生成)技术在企业级应用中展现出巨大的潜力和价值。通过结合检索和生成,RAG系统能够提供更准确、更相关的回答,满足企
- KNN算法性能优化技巧与实战案例
可问 可问春风
算法性能优化
KNN算法性能优化技巧与实战案例K最近邻(KNN)在分类和回归任务中表现稳健,但其计算复杂度高、内存消耗大成为IT项目中的主要瓶颈。以下从算法优化、数据结构、工程实践三方面深入解析性能提升策略,并附典型应用案例。一、核心性能瓶颈维度挑战描述计算复杂度单次预测需计算全部训练样本距离,时间复杂度为(n=样本数,d=特征维度)内存占用需全量存储训练数据,大规模数据集难以加载高维灾难高维数据中距离计算失去
- 2025华为OD机试(Python/JS/C/C++)真题【E卷+A卷+B卷+C卷+D卷】目录
哪 吒
搬砖工逆袭Java架构师华为odpythonjavascript
专栏导读本专栏收录于《华为OD机试真题(Python/JS/C/C++)》。刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新。2024年8月14日,华为官方已经将华为OD机试(D卷)切换为E卷。目前正在考的是E卷,按照华为OD往常的操作,E卷题目是由往
- 带你深入了解防抖Debounce和节流Throttle
全马必破三
笔记前端javascript
前言:防抖(Debounce)和节流(Throttle)是两种在前端开发中常用的优化技术,它们主要用于处理频繁触发的事件(如滚动、窗口调整大小、键盘输入等),以减少不必要的计算,从而提高性能和优化用户体验。一、防抖概念所谓防抖,就是指触发事件后,在n秒内函数只能执行一次,如果在n秒内又触发了事件,则会重新计算函数执行时间。简而言之,防抖确保函数在一段时间内只执行一次,且是在最后一次触发事件后执行。
- OOM系列之一:java.lang.OutOfMemoryError: Java堆空间问题详解
马小瑄
经验分享开发语言程序人生java性能优化
第一篇:java.lang.OutOfMemoryError:JavaheapspaceJava应用程序只允许使用有限的内存量。此限制是在应用程序启动期间指定的。为了让事情变得更复杂,Java内存被分成两个不同的区域。这些区域称为堆空间和Permgen(用于永久代):这些区域的大小是在Java虚拟机(JVM)启动期间设置的,可以通过指定JVM参数-Xmx和-XX:MaxPermSize进行自定义。
- 基于 KTransformers的DeepSeek-R1 本地部署方案,成本骤降32倍!
爱科技Ai
LLM人工智能
随着DeepSeek-R1模型在全球范围内的流行,越来越多的用户开始在本地尝试部署该模型。然而,高昂的硬件需求和成本让许多公司望而却步。本文将深入探讨DeepSeek-R1部署中的挑战,并介绍一款创新框架KTransformers,它能够显著降低大规模模型部署的成本并提高推理效率,从而帮助更多中小企业有效部署此类高级AI模型。本地部署“成本骤降32倍”,助力R1真正落地「中小企业」中!1.Deep
- element audio 标签 不显示_BenQ 明基专业摄影显示器SW270C开箱评测体验
weixin_39685130
elementaudio标签不显示
前言继BenQSW271显示器(评测链接)之后,BenQ又推出了专业影像工作者的高效利器—SW270C(官网链接),搭配27英寸2K分辨率IPS屏,覆盖99%AdobeRGB、100%sRGB\Rec.709及97%P3广色域,并采用全新的色彩引擎实现亮度色温均匀性,使屏幕各个部分呈现均匀一致的色彩。新推出的16-bit3DLUT结合硬件校准让屏幕色彩更加准确,能够还原真实的色彩。另外,BenQS
- 程序员必看!DeepSeek全栈开发指南:从代码生成到分布式训练的黑科技解析
AI创享派
后端
一、DeepSeek技术新突破:程序员必须掌握的MoE架构实战2025年2月25日,DeepSeek开源了专为MoE模型设计的DeepEP通信库,这项技术革新直接影响了分布式训练和推理效率。该库支持FP8精度与NVLink/RDMA技术,吞吐量提升3倍以上,特别适合处理千亿级参数的分布式任务。对于后端工程师而言,DeepEP的以下特性值得关注:计算-通信重叠机制:通过回调函数实现GPU资源动态分配
- PCDN 与边缘计算的结合:未来内容分发的新趋势
yczykjyxgs
pcdn智能路由器
在数字化浪潮中,内容分发面临着前所未有的挑战与机遇。PCDN(P2P内容分发网络)与边缘计算的结合,正逐渐崭露头角,成为未来内容分发的新趋势。PCDN通过P2P技术,利用用户节点的闲置资源进行内容分发,有效减轻了中心服务器的压力,降低了传输成本。然而,在面对实时性要求极高的业务场景时,PCDN仍存在一定局限。边缘计算的出现,为解决这一问题提供了新思路。边缘计算将计算和存储能力下沉到网络边缘,靠近用
- 大模型+智能代理:自动化测试的终极组合?
测试者家园
软件测试质量效能人工智能人工智能软件测试质量效能职场和发展AI赋能智能体LLM
用ChatGPT做软件测试在软件测试领域,自动化测试的目标一直是提高测试效率、减少人工干预、提升缺陷发现率。然而,传统自动化测试仍然面临诸多挑战,例如脚本维护成本高、难以应对动态UI变化、测试数据生成受限,以及难以覆盖复杂业务逻辑。近年来,大模型(LLM,LargeLanguageModel)+智能代理(Agent)的结合,为自动化测试带来了新的可能性。这种“智能测试代理”能够利用大模型的自然语言
- LLM对齐方法作用:主要解决大型语言模型(LLMs)输出与人类价值观、需求和安全规范不一致的问题
ZhangJiQun&MXP
2021AIpython2024大模型以及算力2021数字交易数字资产语言模型安全人工智能机器学习自然语言处理算法
LLM对齐方法作用:主要解决大型语言模型(LLMs)输出与人类价值观、需求和安全规范不一致的问题对齐方法(AlignmentMethods)主要解决大型语言模型(LLMs)输出与人类价值观、需求和安全规范不一致的问题。其核心目标是让模型生成的内容更符合人类预期,同时确保伦理合规性和实用性。以下是对齐方法解决的具体问题及典型场景:1.安全性与伦理问题问题:基础LLMs可能生成有害内容(如暴力、歧视、
- 点亮绿色未来:走进综合能源服务认证
AEMC马广川
能源java前端服务器大数据人工智能
能源,是城市运转的血液,也是社会发展的动力。然而,传统的能源利用方式正面临着资源紧张、环境污染等挑战。如何破解能源困局,构建清洁低碳、安全高效的能源体系?综合能源服务认证,为我们提供了一把开启绿色未来的钥匙。一、认证的意义:为绿色未来保驾护航想象一下,未来的城市,高楼大厦不再是被冰冷的钢筋水泥包裹,而是披上了一层“绿色外衣”。这层“外衣”不仅能遮风挡雨,还能吸收太阳能、风能,为建筑提供清洁能源。而
- 鸿蒙HarmonyOS开发系列:WebSocket消息发送应用示例
太空人_喜之郎
HarmonyOS鸿蒙OpenHarmonyharmonyos华为前端linux鸿蒙移动开发程序员
1.WebSocket简介WebSocket协议最初于2011年通过RFC6455完成了标准定义,后来又通过RFC7936、RFC8307、RFC8441等标准对协议进行了完善。WebSocket位于网络分层模型的应用层,是建立在TCP之上的双向通讯协议,可以在一个TCP连接上进行全双工通信;和HTTP不同的是,WebSocket通讯需要服务端和客户端先通过握手连接,连接成功后才能相互通信。2.W
- mybatis一对多结果集,主表分页查询,子表条件查询
寂寞旅行
MybatisMPmybatistomcatjava
文章目录前言一、举个栗子二、如何解决这个问题1.嵌套查询2.嵌套结果集查询根据如上思路,这里做些伪代码方便大家理解总结太复杂了,有更简单的前言一对多查询mybatis中一对多的查询一般分为两种:嵌套查询:主表查询过程中,再次调用一个查询,取查询子表数据嵌套结果集查询:一次性查询主表关联出子表,通过结果集封装,将自己封装为一个集合,返回一个一对多的结果今天要说的是当:做了一对多查询后,还要对多的子表
- Flutter 自定义年月日倒计时
xudailong_blog
Flutter开发flutter倒计时年月日android
因项目中的订单页需要一个定时器,比如下单后需要进行倒计时,等倒计时完后,订单状态自动关闭。如图:这里显示等17分25秒就是我们所需要做的功能。项目里还有其他倒计时类型,比如年月日,天之类的,先上一个工具类://时间格式化,根据总秒数转换为对应的hh:mm:ss格式staticStringconstructTime(intseconds){intday=seconds~/3600~/24;intho
- 中国首款AI原生IDE:字节跳动Trae国内版深度解析与实践指南
代码的建筑师
学习记录模型学习笔记AIIDETrae字节跳动AI代码编辑器
一、Trae国内版重磅发布:中国AI编程新标杆2025年3月3日,字节跳动正式推出国内首个AI原生集成开发环境(AIIDE)——Trae国内版。作为对标Cursor的国产工具,Trae以动态智能协作为核心,重新定义开发者与AI的协同模式。其核心目标是通过深度集成AI能力,帮助开发者从“工具使用者”向“AI协同创新者”转型,显著提升全流程开发效率。关键发布亮点:模型支持:搭载字节自研的Doubao-
- 大模型火爆 2025:LLaMA、Qwen、DeepSeek 核心原理+就业秘籍,快速入门 AI 工程师
weixin_40941102
llama人工智能
1.大模型核心原理:从零开始理解AI模型这些是大型语言模型(LLMs)的核心技术,适合初学者逐步深入学习。以下是详细拆解,让小白也能掌握:LLaMA系列模型核心原理详解:什么是LLaMA?:LLaMA是一个基于人工智能的语言模型,像一个超级聪明的聊天机器人,能理解和生成人类语言。它由Meta公司开发,类似ChatGPT,但更开源、灵活。核心原理:Transformer架构:想象一个工厂流水线,LL
- 【AI】Transformer布道:让AI学会“左顾右盼”的超级大脑!(扫盲帖)
碣石潇湘无限路
人工智能transformer深度学习
在LLM爆火的时代,如果还不了解Transformer就太落伍了,下面我第一次尝试用一种更日常、更口语化的方式,把Transformer这个模型讲个大概。你可以想象我们是从“什么是注意力”开始,一步步搭积木,直到把整个Transformer这台“机器”组装起来,然后再看看它能干什么、怎么训练、为什么厉害。主要目的就是帮助更多的非AI专业的人群入门和了解实现AGI的底层架构。1.为什么要有Trans
- 数据结构-顺序栈详解(超基础的那种)
FifthDesign
指针数据结构c++栈编程语言
顺序栈的设计及运行1.顺序栈栈是在顺序表和链表的基础上学习的另一种存储形式,是只能在表的一端(栈顶)进行插入和删除的线性表,也就是遵循先进后出的原则,它与线性表一样,仍然是一对一的关系,根据存储关系不同,可以分为顺序栈和链栈,这里我来演示一下顺序栈的C语言操作。还是那句话,没有什么是操作一遍解决不了的,如果还有的话,那就再来一遍,嗯,请叫这句话为lanyan理论,哈哈嗝。2.代码部分主函数(主函数
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$