https://netfiles.uiuc.edu/jbhuang1/www/resources/vision/index.html
Maintained by Jia-Bin Huang
3D Computer Vision: Past, Present, and Future
Talk
3D Computer Vision
http://www.youtube.com/watch?v=kyIzMr917Rc
Steven Seitz, University of Washington, Google Tech Talk, 2011
Computer Vision and 3D Perception for Robotics
Tutorial
3D perception
http://www.willowgarage.com/workshops/2010/eccv
Radu Bogdan Rusu, Gary Bradski, Caroline Pantofaru, Stefan Hinterstoisser, Stefan Holzer, Kurt Konolige and Andrea Vedaldi, ECCV 2010 Tutorial
3D point cloud processing: PCL (Point Cloud Library)
Tutorial
3D point cloud processing
http://www.pointclouds.org/media/iccv2011.html
R. Rusu, S. Holzer, M. Dixon, V. Rabaud, ICCV 2011 Tutorial
Looking at people: The past, the present and the future
Tutorial
Action Recognition
http://www.cs.brown.edu/~ls/iccv2011tutorial.html
L. Sigal, T. Moeslund, A. Hilton, V. Kruger, ICCV 2011 Tutorial
Frontiers of Human Activity Analysis
Tutorial
Action Recognition
http://cvrc.ece.utexas.edu/mryoo/cvpr2011tutorial/
J. K. Aggarwal, Michael S. Ryoo, and Kris Kitani, CVPR 2011 Tutorial
Statistical and Structural Recognition of Human Actions
Tutorial
Action Recognition
https://sites.google.com/site/humanactionstutorialeccv10/
Ivan Laptev and Greg Mori, ECCV 2010 Tutorial
Dense Trajectories Video Description
Code
Action Recognition
http://lear.inrialpes.fr/people/wang/dense_trajectories
H. Wang and A. Klaser and C. Schmid and C.- L. Liu, Action Recognition by Dense Trajectories, CVPR, 2011
3D Gradients (HOG3D)
Code
Action Recognition
http://lear.inrialpes.fr/people/klaeser/research_hog3d
A. Klaser, M. Marszałek, and C. Schmid, BMVC, 2008.
Spectral Matting
Code
Alpha Matting
http://www.vision.huji.ac.il/SpectralMatting/
A. Levin, A. Rav-Acha, D. Lischinski. Spectral Matting. PAMI 2008
Learning-based Matting
Code
Alpha Matting
http://www.mathworks.com/matlabcentral/fileexchange/31412
Y. Zheng and C. Kambhamettu, Learning Based Digital Matting, ICCV 2009
Bayesian Matting
Code
Alpha Matting
http://www1.idc.ac.il/toky/CompPhoto-09/Projects/Stud_projects/Miki/index.html
Y. Y. Chuang, B. Curless, D. H. Salesin, and R. Szeliski, A Bayesian Approach to Digital Matting, CVPR, 2001
Closed Form Matting
Code
Alpha Matting
http://people.csail.mit.edu/alevin/matting.tar.gz
A. Levin D. Lischinski and Y. Weiss. A Closed Form Solution to Natural Image Matting, PAMI 2008.
Shared Matting
Code
Alpha Matting
http://www.inf.ufrgs.br/~eslgastal/SharedMatting/
E. S. L. Gastal and M. M. Oliveira, Computer Graphics Forum, 2010
Introduction To Bayesian Inference
Talk
Bayesian Inference
http://videolectures.net/mlss09uk_bishop_ibi/
Christopher Bishop, Microsoft Research
Modern Bayesian Nonparametrics
Talk
Bayesian Nonparametrics
http://www.youtube.com/watch?v=F0_ih7THV94&feature=relmfu
Peter Orbanz and Yee Whye Teh
Theory and Applications of Boosting
Talk
Boosting
http://videolectures.net/mlss09us_schapire_tab/
Robert Schapire, Department of Computer Science, Princeton University
Epipolar Geometry Toolbox
Code
Camera Calibration
http://egt.dii.unisi.it/
G.L. Mariottini, D. Prattichizzo, EGT: a Toolbox for Multiple View Geometry and Visual Servoing, IEEE Robotics & Automation Magazine, 2005
Camera Calibration Toolbox for Matlab
Code
Camera Calibration
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/htmls/ref.html
EasyCamCalib
Code
Camera Calibration
http://arthronav.isr.uc.pt/easycamcalib/
J. Barreto, J. Roquette, P. Sturm, and F. Fonseca, Automatic camera calibration applied to medical endoscopy, BMVC, 2009
Spectral Clustering - UCSD Project
Code
Clustering
http://vision.ucsd.edu/~sagarwal/spectral-0.2.tgz
K-Means - Oxford Code
Code
Clustering
http://www.cs.ucf.edu/~vision/Code/vggkmeans.zip
Self-Tuning Spectral Clustering
Code
Clustering
http://www.vision.caltech.edu/lihi/Demos/SelfTuningClustering.html
K-Means - VLFeat
Code
Clustering
http://www.vlfeat.org/
Spectral Clustering - UW Project
Code
Clustering
http://www.stat.washington.edu/spectral/
Color image understanding: from acquisition to high-level image understanding
Tutorial
Color Image Processing
http://www.cat.uab.cat/~joost/tutorial_iccv.html
Theo Gevers, Keigo Hirakawa, Joost van de Weijer, ICCV 2011 Tutorial
Sketching the Common
Code
Common Visual Pattern Discovery
http://www.wisdom.weizmann.ac.il/~bagon/matlab_code/SketchCommonCVPR10_v1.1.tar.gz
S. Bagon, O. Brostovsky, M. Galun and M. Irani, Detecting and Sketching the Common, CVPR 2010
Common Visual Pattern Discovery via Spatially Coherent Correspondences
Code
Common Visual Pattern Discovery
https://sites.google.com/site/lhrbss/home/papers/SimplifiedCode.zip?attredirects=0
H. Liu, S. Yan, "Common Visual Pattern Discovery via Spatially Coherent Correspondences", CVPR 2010
Fcam: an architecture and API for computational cameras
Tutorial
Computational Imaging
http://fcam.garage.maemo.org/iccv2011.html
Kari Pulli, Andrew Adams, Timo Ahonen, Marius Tico, ICCV 2011 Tutorial
Computational Photography, University of Illinois, Urbana-Champaign, Fall 2011
Course
Computational Photography
http://www.cs.illinois.edu/class/fa11/cs498dh/
Derek Hoiem
Computational Photography, CMU, Fall 2011
Course
Computational Photography
http://graphics.cs.cmu.edu/courses/15-463/2011_fall/463.html
Alexei “Alyosha” Efros
Computational Symmetry: Past, Current, Future
Tutorial
Computational Symmetry
http://vision.cse.psu.edu/research/symmComp/index.shtml
Yanxi Liu, ECCV 2010 Tutorial
Introduction to Computer Vision, Stanford University, Winter 2010-2011
Course
Computer Vision
http://vision.stanford.edu/teaching/cs223b/
Fei-Fei Li
Computer Vision: From 3D Reconstruction to Visual Recognition, Fall 2012
Course
Computer Vision
https://www.coursera.org/course/computervision
Silvio Savarese and Fei-Fei Li
Computer Vision, University of Texas at Austin, Spring 2011
Course
Computer Vision
http://www.cs.utexas.edu/~grauman/courses/spring2011/index.html
Kristen Grauman
Learning-Based Methods in Vision, CMU, Spring 2012
Course
Computer Vision
https://docs.google.com/document/pub?id=1jGBn7zPDEaU33fJwi3YI_usWS-U6gpSSJotV_2gDrL0
Alexei “Alyosha” Efros and Leonid Sigal
Introduction to Computer Vision
Course
Computer Vision
http://www.cs.brown.edu/courses/cs143/
James Hays, Brown University, Fall 2011
Computer Image Analysis, Computer Vision Conferences
Link
Computer Vision
http://iris.usc.edu/information/Iris-Conferences.html
USC
CV Papers on the web
Link
Computer Vision
http://www.cvpapers.com/index.html
CVPapers
Computer Vision, University of North Carolina at Chapel Hill, Spring 2010
Course
Computer Vision
http://www.cs.unc.edu/~lazebnik/spring10/
Svetlana Lazebnik
CVonline
Link
Computer Vision
http://homepages.inf.ed.ac.uk/rbf/CVonline/
CVonline: The Evolving, Distributed, Non-Proprietary, On-Line Compendium of Computer Vision
Computer Vision: The Fundamentals, University of California at Berkeley, Fall 2012
Course
Computer Vision
https://www.coursera.org/course/vision
Jitendra Malik
Computer Vision, New York University, Fall 2012
Course
Computer Vision
http://cs.nyu.edu/~fergus/teaching/vision_2012/index.html
Rob Fergus
Advances in Computer Vision
Course
Computer Vision
http://groups.csail.mit.edu/vision/courses/6.869/
Antonio Torralba, MIT, Spring 2010
Annotated Computer Vision Bibliography
Link
Computer Vision
http://iris.usc.edu/Vision-Notes/bibliography/contents.html
compiled by Keith Price
Computer Vision, University of Illinois, Urbana-Champaign, Spring 2012
Course
Computer Vision
http://www.cs.illinois.edu/class/sp12/cs543/
Derek Hoiem
The Computer Vision homepage
Link
Computer Vision
http://www.cs.cmu.edu/afs/cs/project/cil/ftp/html/vision.html
Computer Vision, University of Washington, Winter 2012
Course
Computer Vision
http://www.cs.washington.edu/education/courses/cse455/12wi/
Steven Seitz
CV Datasets on the web
Link
Computer Vision
http://www.cvpapers.com/datasets.html
CVPapers
The Computer Vision Industry
Link
Computer Vision Industry
http://www.cs.ubc.ca/~lowe/vision.html
David Lowe
Compiled list of recognition datasets
Link
Dataset
http://www.cs.utexas.edu/~grauman/courses/spring2008/datasets.htm
compiled by Kristen Grauman
Decision forests for classification, regression, clustering and density estimation
Tutorial
Decision Forests
http://research.microsoft.com/en-us/groups/vision/decisionforests.aspx
A. Criminisi, J. Shotton and E. Konukoglu, ICCV 2011 Tutorial
A tutorial on Deep Learning
Talk
Deep Learning
http://videolectures.net/jul09_hinton_deeplearn/
Geoffrey E. Hinton, Department of Computer Science, University of Toronto
Kernel Density Estimation Toolbox
Code
Density Estimation
http://www.ics.uci.edu/~ihler/code/kde.html
Kinect SDK
Code
Depth Sensor
http://www.microsoft.com/en-us/kinectforwindows/
http://www.microsoft.com/en-us/kinectforwindows/
LLE
Code
Dimension Reduction
http://www.cs.nyu.edu/~roweis/lle/code.html
Laplacian Eigenmaps
Code
Dimension Reduction
http://www.cse.ohio-state.edu/~mbelkin/algorithms/Laplacian.tar
Diffusion maps
Code
Dimension Reduction
http://www.stat.cmu.edu/~annlee/software.htm
ISOMAP
Code
Dimension Reduction
http://isomap.stanford.edu/
Dimensionality Reduction Toolbox
Code
Dimension Reduction
http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html
Matlab Toolkit for Distance Metric Learning
Code
Distance Metric Learning
http://www.cs.cmu.edu/~liuy/distlearn.htm
Distance Functions and Metric Learning
Tutorial
Distance Metric Learning
http://www.cs.huji.ac.il/~ofirpele/DFML_ECCV2010_tutorial/
M. Werman, O. Pele and B. Kulis, ECCV 2010 Tutorial
Distance Transforms of Sampled Functions
Code
Distance Transformation
http://people.cs.uchicago.edu/~pff/dt/
Hidden Markov Models
Tutorial
Expectation Maximization
http://crow.ee.washington.edu/people/bulyko/papers/em.pdf
Jeff A. Bilmes, University of California at Berkeley
Edge Foci Interest Points
Code
Feature Detection
http://research.microsoft.com/en-us/um/people/larryz/edgefoci/edge_foci.htm
L. Zitnickand K. Ramnath, Edge Foci Interest Points, ICCV, 2011
Boundary Preserving Dense Local Regions
Code
Feature Detection
http://vision.cs.utexas.edu/projects/bplr/bplr.html
J. Kim and K. Grauman, Boundary Preserving Dense Local Regions, CVPR 2011
Canny Edge Detection
Code
Feature Detection
http://www.mathworks.com/help/toolbox/images/ref/edge.html
J. Canny, A Computational Approach To Edge Detection, PAMI, 1986
FAST Corner Detection
Code
Feature Detection
http://www.edwardrosten.com/work/fast.html
E. Rosten and T. Drummond, Machine learning for high-speed corner detection, ECCV, 2006
Groups of Adjacent Contour Segments
Code
Feature Detection; Feature Extraction
http://www.robots.ox.ac.uk/~vgg/share/ferrari/release-kas-v102.tgz
V. Ferrari, L. Fevrier, F. Jurie, and C. Schmid, Groups of Adjacent Contour Segments for Object Detection, PAMI, 2007
Maximally stable extremal regions (MSER) - VLFeat
Code
Feature Detection; Feature Extraction
http://www.vlfeat.org/
J. Matas, O. Chum, M. Urba, and T. Pajdla. Robust wide baseline stereo from maximally stable extremal regions. BMVC, 2002
Geometric Blur
Code
Feature Detection; Feature Extraction
http://www.robots.ox.ac.uk/~vgg/software/MKL/
A. C. Berg, T. L. Berg, and J. Malik. Shape matching and object recognition using low distortion correspondences. CVPR, 2005
Affine-SIFT
Code
Feature Detection; Feature Extraction
http://www.ipol.im/pub/algo/my_affine_sift/
J.M. Morel and G.Yu, ASIFT, A new framework for fully affine invariant image comparison. SIAM Journal on Imaging Sciences, 2009
Scale-invariant feature transform (SIFT) - Demo Software
Code
Feature Detection; Feature Extraction
http://www.cs.ubc.ca/~lowe/keypoints/
D. Lowe. Distinctive Image Features from Scale-Invariant Keypoints, IJCV 2004.
Affine Covariant Features
Code
Feature Detection; Feature Extraction
http://www.robots.ox.ac.uk/~vgg/research/affine/
T. Tuytelaars and K. Mikolajczyk, Local Invariant Feature Detectors: A Survey, Foundations and Trends in Computer Graphics and Vision, 2008
Scale-invariant feature transform (SIFT) - Library
Code
Feature Detection; Feature Extraction
http://blogs.oregonstate.edu/hess/code/sift/
D. Lowe. Distinctive Image Features from Scale-Invariant Keypoints, IJCV 2004.
Maximally stable extremal regions (MSER)
Code
Feature Detection; Feature Extraction
http://www.robots.ox.ac.uk/~vgg/research/affine/
J. Matas, O. Chum, M. Urba, and T. Pajdla. Robust wide baseline stereo from maximally stable extremal regions. BMVC, 2002
Color Descriptor
Code
Feature Detection; Feature Extraction
http://koen.me/research/colordescriptors/
K. E. A. van de Sande, T. Gevers and Cees G. M. Snoek, Evaluating Color Descriptors for Object and Scene Recognition, PAMI, 2010
Speeded Up Robust Feature (SURF) - Open SURF
Code
Feature Detection; Feature Extraction
http://www.chrisevansdev.com/computer-vision-opensurf.html
H. Bay, T. Tuytelaars and L. V. Gool SURF: Speeded Up Robust Features, ECCV, 2006
Scale-invariant feature transform (SIFT) - VLFeat
Code
Feature Detection; Feature Extraction
http://www.vlfeat.org/
D. Lowe. Distinctive Image Features from Scale-Invariant Keypoints, IJCV 2004.
Speeded Up Robust Feature (SURF) - Matlab Wrapper
Code
Feature Detection; Feature Extraction
http://www.maths.lth.se/matematiklth/personal/petter/surfmex.php
H. Bay, T. Tuytelaars and L. V. Gool SURF: Speeded Up Robust Features, ECCV, 2006
Space-Time Interest Points (STIP)
Code
Feature Detection; Feature Extraction; Action Recognition
http://www.irisa.fr/vista/Equipe/People/Laptev/download/stip-1.1-winlinux.zip;http://www.nada.kth.se/cvap/abstracts/cvap284.html
I. Laptev, On Space-Time Interest Points, IJCV, 2005; I. Laptev and T. Lindeberg, On Space-Time Interest Points, IJCV 2005
PCA-SIFT
Code
Feature Extraction
http://www.cs.cmu.edu/~yke/pcasift/
Y. Ke and R. Sukthankar, PCA-SIFT: A More Distinctive Representation for Local Image Descriptors,CVPR, 2004
sRD-SIFT
Code
Feature Extraction
http://arthronav.isr.uc.pt/~mlourenco/srdsift/index.html#
M. Lourenco, J. P. Barreto and A. Malti, Feature Detection and Matching in Images with Radial Distortion, ICRA 2010
Local Self-Similarity Descriptor
Code
Feature Extraction
http://www.robots.ox.ac.uk/~vgg/software/SelfSimilarity/
E. Shechtman and M. Irani. Matching local self-similarities across images and videos, CVPR, 2007
Pyramids of Histograms of Oriented Gradients (PHOG)
Code
Feature Extraction
http://www.robots.ox.ac.uk/~vgg/research/caltech/phog/phog.zip
A. Bosch, A. Zisserman, and X. Munoz, Representing shape with a spatial pyramid kernel, CIVR, 2007
BRIEF: Binary Robust Independent Elementary Features
Code
Feature Extraction
http://cvlab.epfl.ch/research/detect/brief/
M. Calonder, V. Lepetit, C. Strecha, P. Fua, BRIEF: Binary Robust Independent Elementary Features, ECCV 2010
Global and Efficient Self-Similarity
Code
Feature Extraction
http://www.vision.ee.ethz.ch/~calvin/gss/selfsim_release1.0.tgz
T. Deselaers and V. Ferrari. Global and Efficient Self-Similarity for Object Classification and Detection. CVPR 2010; T. Deselaers, V. Ferrari, Global and Efficient Self-Similarity for Object Classification and Detection, CVPR 2010
GIST Descriptor
Code
Feature Extraction
http://people.csail.mit.edu/torralba/code/spatialenvelope/
A. Oliva and A. Torralba. Modeling the shape of the scene: a holistic representation of the spatial envelope, IJCV, 2001
Shape Context
Code
Feature Extraction
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/shape/sc_digits.html
S. Belongie, J. Malik and J. Puzicha. Shape matching and object recognition using shape contexts, PAMI, 2002
Image and Video Description with Local Binary Pattern Variants
Tutorial
Feature Extraction
http://www.ee.oulu.fi/research/imag/mvg/files/pdf/CVPR-tutorial-final.pdf
M. Pietikainen and J. Heikkila, CVPR 2011 Tutorial
Histogram of Oriented Graidents - OLT for windows
Code
Feature Extraction; Object Detection
http://www.computing.edu.au/~12482661/hog.html
N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. CVPR 2005
Histogram of Oriented Graidents - INRIA Object Localization Toolkit
Code
Feature Extraction; Object Detection
http://www.navneetdalal.com/software
N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. CVPR 2005
Feature Learning for Image Classification
Tutorial
Feature Learning, Image Classification
http://ufldl.stanford.edu/eccv10-tutorial/
Kai Yu and Andrew Ng, ECCV 2010 Tutorial
The Pyramid Match: Efficient Matching for Retrieval and Recognition
Code
Feature Matching; Image Classification
http://www.cs.utexas.edu/~grauman/research/projects/pmk/pmk_projectpage.htm
K. Grauman and T. Darrell. The Pyramid Match Kernel: Discriminative Classification with Sets of Image Features, ICCV 2005
Game Theory in Computer Vision and Pattern Recognition
Tutorial
Game Theory
http://www.dsi.unive.it/~atorsell/cvpr2011tutorial/
Marcello Pelillo and Andrea Torsello, CVPR 2011 Tutorial
Gaussian Process Basics
Talk
Gaussian Process
http://videolectures.net/gpip06_mackay_gpb/
David MacKay, University of Cambridge
Hyper-graph Matching via Reweighted Random Walks
Code
Graph Matching
http://cv.snu.ac.kr/research/~RRWHM/
J. Lee, M. Cho, K. M. Lee. "Hyper-graph Matching via Reweighted Random Walks", CVPR 2011
Reweighted Random Walks for Graph Matching
Code
Graph Matching
http://cv.snu.ac.kr/research/~RRWM/
M. Cho, J. Lee, and K. M. Lee, Reweighted Random Walks for Graph Matching, ECCV 2010
Learning with inference for discrete graphical models
Tutorial
Graphical Models
http://www.csd.uoc.gr/~komod/ICCV2011_tutorial/
Nikos Komodakis, Pawan Kumar, Nikos Paragios, Ramin Zabih, ICCV 2011 Tutorial
Graphical Models and message-passing algorithms
Talk
Graphical Models
http://videolectures.net/mlss2011_wainwright_messagepassing/
Martin J. Wainwright, University of California at Berkeley
Graphical Models, Exponential Families, and Variational Inference
Tutorial
Graphical Models
http://www.eecs.berkeley.edu/~wainwrig/Papers/WaiJor08_FTML.pdf
Martin J. Wainwright and Michael I. Jordan, University of California at Berkeley
Inference in Graphical Models, Stanford University, Spring 2012
Course
Graphical Models
http://www.stanford.edu/~montanar/TEACHING/Stat375/stat375.html
Andrea Montanari, Stanford University
Ground shadow detection
Code
Illumination, Reflectance, and Shadow
http://www.jflalonde.org/software.html#shadowDetection
J.-F. Lalonde, A. A. Efros, S. G. Narasimhan, Detecting Ground Shadowsin Outdoor Consumer Photographs, ECCV 2010
Estimating Natural Illumination from a Single Outdoor Image
Code
Illumination, Reflectance, and Shadow
http://www.cs.cmu.edu/~jlalonde/software.html#skyModel
J-F. Lalonde, A. A. Efros, S. G. Narasimhan, Estimating Natural Illumination from a Single Outdoor Image , ICCV 2009
What Does the Sky Tell Us About the Camera?
Code
Illumination, Reflectance, and Shadow
http://www.cs.cmu.edu/~jlalonde/software.html#skyModel
J-F. Lalonde, S. G. Narasimhan, A. A. Efros, What Does the Sky Tell Us About the Camera?, ECCV 2008
Shadow Detection using Paired Region
Code
Illumination, Reflectance, and Shadow
http://www.cs.illinois.edu/homes/guo29/projects/shadow.html
R. Guo, Q. Dai and D. Hoiem, Single-Image Shadow Detection and Removal using Paired Regions, CVPR 2011
Real-time Specular Highlight Removal
Code
Illumination, Reflectance, and Shadow
http://www.cs.cityu.edu.hk/~qiyang/publications/code/eccv-10.zip
Q. Yang, S. Wang and N. Ahuja, Real-time Specular Highlight Removal Using Bilateral Filtering, ECCV 2010
Webcam Clip Art: Appearance and Illuminant Transfer from Time-lapse Sequences
Code
Illumination, Reflectance, and Shadow
http://www.cs.cmu.edu/~jlalonde/software.html#skyModel
J-F. Lalonde, A. A. Efros, S. G. Narasimhan, Webcam Clip Art: Appearance and Illuminant Transfer from Time-lapse Sequences, SIGGRAPH Asia 2009
Sparse Coding for Image Classification
Code
Image Classification
http://www.ifp.illinois.edu/~jyang29/ScSPM.htm
J. Yang, K. Yu, Y. Gong, T. Huang, Linear Spatial Pyramid Matching using Sparse Coding for Image Classification, CVPR, 2009
Texture Classification
Code
Image Classification
http://www.robots.ox.ac.uk/~vgg/research/texclass/index.html
M. Varma and A. Zisserman, A statistical approach to texture classification from single images, IJCV2005
Locality-constrained Linear Coding
Code
Image Classification
http://www.ifp.illinois.edu/~jyang29/LLC.htm
J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained Linear Coding for Image Classification, CVPR, 2010
Spatial Pyramid Matching
Code
Image Classification
http://www.cs.unc.edu/~lazebnik/research/SpatialPyramid.zip
S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories, CVPR 2006
Non-blind deblurring (and blind denoising) with integrated noise estimation
Code
Image Deblurring
http://www.gris.tu-darmstadt.de/research/visinf/software/index.en.htm
U. Schmidt, K. Schelten, and S. Roth. Bayesian deblurring with integrated noise estimation, CVPR 2011
Richardson-Lucy Deblurring for Scenes under Projective Motion Path
Code
Image Deblurring
http://yuwing.kaist.ac.kr/projects/projectivedeblur/projectivedeblur_files/ProjectiveDeblur.zip
Y.-W. Tai, P. Tan, M. S. Brown: Richardson-Lucy Deblurring for Scenes under Projective Motion Path, PAMI 2011
Analyzing spatially varying blur
Code
Image Deblurring
http://www.eecs.harvard.edu/~ayanc/svblur/
A. Chakrabarti, T. Zickler, and W. T. Freeman, Analyzing Spatially-varying Blur, CVPR 2010
Radon Transform
Code
Image Deblurring
http://people.csail.mit.edu/taegsang/Documents/RadonDeblurringCode.zip
T. S. Cho, S. Paris, B. K. P. Horn, W. T. Freeman, Blur kernel estimation using the radon transform, CVPR 2011
Eficient Marginal Likelihood Optimization in Blind Deconvolution
Code
Image Deblurring
http://www.wisdom.weizmann.ac.il/~levina/papers/LevinEtalCVPR2011Code.zip
A. Levin, Y. Weiss, F. Durand, W. T. Freeman. Efficient Marginal Likelihood Optimization in Blind Deconvolution, CVPR 2011
BLS-GSM
Code
Image Denoising
http://decsai.ugr.es/~javier/denoise/
Gaussian Field of Experts
Code
Image Denoising
http://www.cs.huji.ac.il/~yweiss/BRFOE.zip
Field of Experts
Code
Image Denoising
http://www.cs.brown.edu/~roth/research/software.html
BM3D
Code
Image Denoising
http://www.cs.tut.fi/~foi/GCF-BM3D/
Nonlocal means with cluster trees
Code
Image Denoising
http://lmb.informatik.uni-freiburg.de/resources/binaries/nlmeans_brox_tip08Linux64.zip
T. Brox, O. Kleinschmidt, D. Cremers, Efficient nonlocal means for denoising of textural patterns, TIP 2008
Non-local Means
Code
Image Denoising
http://dmi.uib.es/~abuades/codis/NLmeansfilter.m
K-SVD
Code
Image Denoising
http://www.cs.technion.ac.il/~ronrubin/Software/ksvdbox13.zip
What makes a good model of natural images ?
Code
Image Denoising
http://www.cs.huji.ac.il/~yweiss/BRFOE.zip
Y. Weiss and W. T. Freeman, CVPR 2007
Clustering-based Denoising
Code
Image Denoising
http://users.soe.ucsc.edu/~priyam/K-LLD/
P. Chatterjee and P. Milanfar, Clustering-based Denoising with Locally Learned Dictionaries (K-LLD), TIP, 2009
Sparsity-based Image Denoising
Code
Image Denoising
http://www.csee.wvu.edu/~xinl/CSR.html
W. Dong, X. Li, L. Zhang and G. Shi, Sparsity-based Image Denoising vis Dictionary Learning and Structural Clustering, CVPR, 2011
Kernel Regressions
Code
Image Denoising
http://www.soe.ucsc.edu/~htakeda/MatlabApp/KernelRegressionBasedImageProcessingToolBox_ver1-1beta.zip
Learning Models of Natural Image Patches
Code
Image Denoising; Image Super-resolution; Image Deblurring
http://www.cs.huji.ac.il/~daniez/
D. Zoran and Y. Weiss, From Learning Models of Natural Image Patches to Whole Image Restoration, ICCV, 2011
Efficient Belief Propagation for Early Vision
Code
Image Denoising; Stereo Matching
http://www.cs.brown.edu/~pff/bp/
P. F. Felzenszwalb and D. P. Huttenlocher, Efficient Belief Propagation for Early Vision, IJCV, 2006
SVM for Edge-Preserving Filtering
Code
Image Filtering
http://vision.ai.uiuc.edu/~qyang6/publications/code/cvpr-10-svmbf/program_video_conferencing.zip
Q. Yang, S. Wang, and N. Ahuja, SVM for Edge-Preserving Filtering,
Local Laplacian Filters
Code
Image Filtering
http://people.csail.mit.edu/sparis/publi/2011/siggraph/matlab_source_code.zip
S. Paris, S. Hasinoff, J. Kautz, Local Laplacian Filters: Edge-Aware Image Processing with a Laplacian Pyramid, SIGGRAPH 2011
Real-time O(1) Bilateral Filtering
Code
Image Filtering
http://vision.ai.uiuc.edu/~qyang6/publications/code/qx_constant_time_bilateral_filter_ss.zip
Q. Yang, K.-H. Tan and N. Ahuja, Real-time O(1) Bilateral Filtering,
Image smoothing via L0 Gradient Minimization
Code
Image Filtering
http://www.cse.cuhk.edu.hk/~leojia/projects/L0smoothing/L0smoothing.zip
L. Xu, C. Lu, Y. Xu, J. Jia, Image smoothing via L0 Gradient Minimization, SIGGRAPH Asia 2011
Anisotropic Diffusion
Code
Image Filtering
http://www.mathworks.com/matlabcentral/fileexchange/14995-anisotropic-diffusion-perona-malik
P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, PAMI 1990
Guided Image Filtering
Code
Image Filtering
http://personal.ie.cuhk.edu.hk/~hkm007/eccv10/guided-filter-code-v1.rar
K. He, J. Sun, X. Tang, Guided Image Filtering, ECCV 2010
Fast Bilateral Filter
Code
Image Filtering
http://people.csail.mit.edu/sparis/bf/
S. Paris and F. Durand, A Fast Approximation of the Bilateral Filter using a Signal Processing Approach, ECCV, 2006
GradientShop
Code
Image Filtering
http://grail.cs.washington.edu/projects/gradientshop/
P. Bhat, C.L. Zitnick, M. Cohen, B. Curless, and J. Kim, GradientShop: A Gradient-Domain Optimization Framework for Image and Video Filtering, TOG 2010
Domain Transformation
Code
Image Filtering
http://inf.ufrgs.br/~eslgastal/DomainTransform/DomainTransformFilters-Source-v1.0.zip
E. Gastal, M. Oliveira, Domain Transform for Edge-Aware Image and Video Processing, SIGGRAPH 2011
Weighted Least Squares Filter
Code
Image Filtering
http://www.cs.huji.ac.il/~danix/epd/
Z. Farbman, R. Fattal, D. Lischinski, R. Szeliski, Edge-Preserving Decompositions for Multi-Scale Tone and Detail Manipulation, SIGGRAPH 2008
Piotr's Image & Video Matlab Toolbox
Code
Image Processing; Image Filtering
http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html
Piotr Dollar, Piotr's Image & Video Matlab Toolbox,http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html
Structural SIMilarity
Code
Image Quality Assessment
https://ece.uwaterloo.ca/~z70wang/research/ssim/
SPIQA
Code
Image Quality Assessment
http://vision.ai.uiuc.edu/~bghanem2/shared_code/SPIQA_code.zip
Feature SIMilarity Index
Code
Image Quality Assessment
http://www4.comp.polyu.edu.hk/~cslzhang/IQA/FSIM/FSIM.htm
Degradation Model
Code
Image Quality Assessment
http://users.ece.utexas.edu/~bevans/papers/2000/imageQuality/index.html
Tools and Methods for Image Registration
Tutorial
Image Registration
http://www.imgfsr.com/CVPR2011/Tutorial6/
Brown, G. Carneiro, A. A. Farag, E. Hancock, A. A. Goshtasby (Organizer), J. Matas, J.M. Morel, N. S. Netanyahu, F. Sur, and G. Yu, CVPR 2011 Tutorial
SLIC Superpixels
Code
Image Segmentation
http://ivrg.epfl.ch/supplementary_material/RK_SLICSuperpixels/index.html
R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk, SLIC Superpixels, EPFL Technical Report, 2010
Recovering Occlusion Boundaries from a Single Image
Code
Image Segmentation
http://www.cs.cmu.edu/~dhoiem/software/
D. Hoiem, A. Stein, A. A. Efros, M. Hebert, Recovering Occlusion Boundaries from a Single Image, ICCV 2007.
Multiscale Segmentation Tree
Code
Image Segmentation
http://vision.ai.uiuc.edu/segmentation
E. Akbas and N. Ahuja, “From ramp discontinuities to segmentation tree,” ACCV 2009; N. Ahuja, “A Transform for Multiscale Image Segmentation by Integrated Edge and Region Detection,” PAMI 1996
Quick-Shift
Code
Image Segmentation
http://www.vlfeat.org/overview/quickshift.html
A. Vedaldi and S. Soatto, Quick Shift and Kernel Methodsfor Mode Seeking, ECCV, 2008
Efficient Graph-based Image Segmentation - C++ code
Code
Image Segmentation
http://people.cs.uchicago.edu/~pff/segment/
P. Felzenszwalb and D. Huttenlocher. Efficient Graph-Based Image Segmentation, IJCV 2004
Turbepixels
Code
Image Segmentation
http://www.cs.toronto.edu/~babalex/research.html
A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet, S. J. Dickinson, and K. Siddiqi, TurboPixels: Fast Superpixels Using Geometric Flows, PAMI 2009
Superpixel by Gerg Mori
Code
Image Segmentation
http://www.cs.sfu.ca/~mori/research/superpixels/
X. Ren and J. Malik. Learning a classification model for segmentation. ICCV, 2003
Normalized Cut
Code
Image Segmentation
http://www.cis.upenn.edu/~jshi/software/
J. Shi and J Malik, Normalized Cuts and Image Segmentation, PAMI, 2000
Mean-Shift Image Segmentation - Matlab Wrapper
Code
Image Segmentation
http://www.wisdom.weizmann.ac.il/~bagon/matlab_code/edison_matlab_interface.tar.gz
D. Comaniciu, P Meer. Mean Shift: A Robust Approach Toward Feature Space Analysis. PAMI 2002
Segmenting Scenes by Matching Image Composites
Code
Image Segmentation
http://www.cs.washington.edu/homes/bcr/projects/SceneComposites/index.html
B. Russell, A. A. Efros, J. Sivic, W. T. Freeman, A. Zisserman, NIPS 2009
OWT-UCM Hierarchical Segmentation
Code
Image Segmentation
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html
P. Arbelaez, M. Maire, C. Fowlkes and J. Malik. Contour Detection and Hierarchical Image Segmentation. PAMI, 2011
Entropy Rate Superpixel Segmentation
Code
Image Segmentation
http://www.umiacs.umd.edu/~mingyliu/src/ers_matlab_wrapper_v0.1.zip
M.-Y. Liu, O. Tuzel, S. Ramalingam, and R. Chellappa, Entropy Rate Superpixel Segmentation, CVPR 2011
Efficient Graph-based Image Segmentation - Matlab Wrapper
Code
Image Segmentation
http://www.mathworks.com/matlabcentral/fileexchange/25866-efficient-graph-based-image-segmentation
P. Felzenszwalb and D. Huttenlocher. Efficient Graph-Based Image Segmentation, IJCV 2004
Biased Normalized Cut
Code
Image Segmentation
http://www.cs.berkeley.edu/~smaji/projects/biasedNcuts/
S. Maji, N. Vishnoi and J. Malik, Biased Normalized Cut, CVPR 2011
Segmentation by Minimum Code Length
Code
Image Segmentation
http://perception.csl.uiuc.edu/coding/image_segmentation/
A. Y. Yang, J. Wright, S. Shankar Sastry, Y. Ma , Unsupervised Segmentation of Natural Images via Lossy Data Compression, CVIU, 2007
Mean-Shift Image Segmentation - EDISON
Code
Image Segmentation
http://coewww.rutgers.edu/riul/research/code/EDISON/index.html
D. Comaniciu, P Meer. Mean Shift: A Robust Approach Toward Feature Space Analysis. PAMI 2002
Self-Similarities for Single Frame Super-Resolution
Code
Image Super-resolution
https://eng.ucmerced.edu/people/cyang35/ACCV10.zip
C.-Y. Yang, J.-B. Huang, and M.-H. Yang, Exploiting Self-Similarities for Single Frame Super-Resolution, ACCV 2010
MRF for image super-resolution
Code
Image Super-resolution
http://people.csail.mit.edu/billf/project pages/sresCode/Markov Random Fields for Super-Resolution.html
W. T Freeman and C. Liu. Markov Random Fields for Super-resolution and Texture Synthesis. In A. Blake, P. Kohli, and C. Rother, eds., Advances in Markov Random Fields for Vision and Image Processing, Chapter 10. MIT Press, 2011
Sprarse coding super-resolution
Code
Image Super-resolution
http://www.ifp.illinois.edu/~jyang29/ScSR.htm
J. Yang, J. Wright, T. S. Huang, and Y. Ma. Image super-resolution via sparse representation, TIP 2010
Multi-frame image super-resolution
Code
Image Super-resolution
http://www.robots.ox.ac.uk/~vgg/software/SR/index.html
Pickup, L. C. Machine Learning in Multi-frame Image Super-resolution, PhD thesis
Single-Image Super-Resolution Matlab Package
Code
Image Super-resolution
http://www.cs.technion.ac.il/~elad/Various/Single_Image_SR.zip
R. Zeyde, M. Elad, and M. Protter, On Single Image Scale-Up using Sparse-Representations, LNCS 2010
MDSP Resolution Enhancement Software
Code
Image Super-resolution
http://users.soe.ucsc.edu/~milanfar/software/superresolution.html
S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, Fast and Robust Multi-frame Super-resolution, TIP 2004
Nonparametric Scene Parsing via Label Transfer
Code
Image Understanding
http://people.csail.mit.edu/celiu/LabelTransfer/index.html
C. Liu, J. Yuen, and Antonio Torralba, Nonparametric Scene Parsing via Label Transfer, PAMI 2011
Discriminative Models for Multi-Class Object Layout
Code
Image Understanding
http://www.ics.uci.edu/~desaic/multiobject_context.zip
C. Desai, D. Ramanan, C. Fowlkes. "Discriminative Models for Multi-Class Object Layout, IJCV 2011
Towards Total Scene Understanding
Code
Image Understanding
http://vision.stanford.edu/projects/totalscene/index.html
L.-J. Li, R. Socher and Li F.-F.. Towards Total Scene Understanding:Classification, Annotation and Segmentation in an Automatic Framework, CVPR 2009
Object Bank
Code
Image Understanding
http://vision.stanford.edu/projects/objectbank/index.html
Li-Jia Li, Hao Su, Eric P. Xing and Li Fei-Fei. Object Bank: A High-Level Image Representation for Scene Classification and Semantic Feature Sparsification, NIPS 2010
SuperParsing
Code
Image Understanding
http://www.cs.unc.edu/~jtighe/Papers/ECCV10/eccv10-jtighe-code.zip
J. Tighe and S. Lazebnik, SuperParsing: Scalable Nonparametric Image
Blocks World Revisited: Image Understanding using Qualitative Geometry and Mechanics
Code
Image Understanding
http://www.cs.cmu.edu/~abhinavg/blocksworld/#downloads
A. Gupta, A. A. Efros, M. Hebert, Blocks World Revisited: Image Understanding using Qualitative Geometry and Mechanics, ECCV 2010
Information Theory
Talk
Information Theory
http://videolectures.net/mlss09uk_mackay_it/
David MacKay, University of Cambridge
Information Theory in Learning and Control
Talk
Information Theory
http://www.youtube.com/watch?v=GKm53xGbAOk&feature=relmfu
Naftali (Tali) Tishby, The Hebrew University
Efficient Earth Mover's Distance with L1 Ground Distance (EMD_L1)
Code
Kernels and Distances
http://www.dabi.temple.edu/~hbling/code/EmdL1_v3.zip
H. Ling and K. Okada, An Efficient Earth Mover's Distance Algorithm for Robust Histogram Comparison, PAMI 2007
Machine learning and kernel methods for computer vision
Talk
Kernels and Distances
http://videolectures.net/etvc08_bach_mlakm/
Francis R. Bach, INRIA
Diffusion-based distance
Code
Kernels and Distances
http://www.dabi.temple.edu/~hbling/code/DD_v1.zip
H. Ling and K. Okada, Diffusion Distance for Histogram Comparison, CVPR 2006
Fast Directional Chamfer Matching
Code
Kernels and Distances
http://www.umiacs.umd.edu/~mingyliu/src/fdcm_matlab_wrapper_v0.2.zip
Learning and Inference in Low-Level Vision
Talk
Low-level vision
http://videolectures.net/nips09_weiss_lil/
Yair Weiss, School of Computer Science and Engineering, The Hebrew University of Jerusalem
TILT: Transform Invariant Low-rank Textures
Code
Low-Rank Modeling
http://perception.csl.uiuc.edu/matrix-rank/tilt.html
Z. Zhang, A. Ganesh, X. Liang, and Y. Ma, TILT: Transform Invariant Low-rank Textures, IJCV 2011
Low-Rank Matrix Recovery and Completion
Code
Low-Rank Modeling
http://perception.csl.uiuc.edu/matrix-rank/sample_code.html
RASL: Robust Batch Alignment of Images by Sparse and Low-Rank Decomposition
Code
Low-Rank Modeling
http://perception.csl.uiuc.edu/matrix-rank/rasl.html
Y. Peng, A. Ganesh, J. Wright, W. Xu, and Y. Ma, RASL: Robust Batch Alignment of Images by Sparse and Low-Rank Decomposition, CVPR 2010
Statistical Pattern Recognition Toolbox
Code
Machine Learning
http://cmp.felk.cvut.cz/cmp/software/stprtool/
M.I. Schlesinger, V. Hlavac: Ten lectures on the statistical and structural pattern recognition, Kluwer Academic Publishers, 2002
FastICA package for MATLAB
Code
Machine Learning
http://research.ics.tkk.fi/ica/fastica/
http://research.ics.tkk.fi/ica/book/
Boosting Resources by Liangliang Cao
Code
Machine Learning
http://www.ifp.illinois.edu/~cao4/reading/boostingbib.htm
http://www.ifp.illinois.edu/~cao4/reading/boostingbib.htm
Netlab Neural Network Software
Code
Machine Learning
http://www1.aston.ac.uk/eas/research/groups/ncrg/resources/netlab/
C. M. Bishop, Neural Networks for Pattern RecognitionㄝOxford University Press, 1995
Matlab Tutorial
Tutorial
Matlab
http://www.cs.unc.edu/~lazebnik/spring10/matlab.intro.html
David Kriegman and Serge Belongie
Writing Fast MATLAB Code
Tutorial
Matlab
http://www.mathworks.com/matlabcentral/fileexchange/5685
Pascal Getreuer, Yale University
MRF Minimization Evaluation
Code
MRF Optimization
http://vision.middlebury.edu/MRF/
R. Szeliski et al., A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors, PAMI, 2008
Max-flow/min-cut
Code
MRF Optimization
http://vision.csd.uwo.ca/code/maxflow-v3.01.zip
Y. Boykov and V. Kolmogorov, An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision, PAMI 2004
Planar Graph Cut
Code
MRF Optimization
http://vision.csd.uwo.ca/code/PlanarCut-v1.0.zip
F. R. Schmidt, E. Toppe and D. Cremers, Efficient Planar Graph Cuts with Applications in Computer Vision, CVPR 2009
Max-flow/min-cut for massive grids
Code
MRF Optimization
http://vision.csd.uwo.ca/code/regionpushrelabel-v1.03.zip
A. Delong and Y. Boykov, A Scalable Graph-Cut Algorithm for N-D Grids, CVPR 2008
Multi-label optimization
Code
MRF Optimization
http://vision.csd.uwo.ca/code/gco-v3.0.zip
Y. Boykov, O. Verksler, and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001
Max-flow/min-cut for shape fitting
Code
MRF Optimization
http://www.csd.uwo.ca/faculty/yuri/Implementations/TouchExpand.zip
V. Lempitsky and Y. Boykov, Global Optimization for Shape Fitting, CVPR 2007
MILIS
Code
Multiple Instance Learning
Z. Fu, A. Robles-Kelly, and J. Zhou, MILIS: Multiple instance learning with instance selection, PAMI 2010
MILES
Code
Multiple Instance Learning
http://infolab.stanford.edu/~wangz/project/imsearch/SVM/PAMI06/
Y. Chen, J. Bi and J. Z. Wang, MILES: Multiple-Instance Learning via Embedded Instance Selection. PAMI 2006
MIForests
Code
Multiple Instance Learning
http://www.ymer.org/amir/software/milforests/
C. Leistner, A. Saffari, and H. Bischof, MIForests: Multiple-Instance Learning with Randomized Trees, ECCV 2010
DD-SVM
Code
Multiple Instance Learning
Yixin Chen and James Z. Wang, Image Categorization by Learning and Reasoning with Regions, JMLR 2004
DOGMA
Code
Multiple Kernel Learning
http://dogma.sourceforge.net/
F. Orabona, L. Jie, and B. Caputo. Online-batch strongly convex multi kernel learning. CVPR, 2010
SHOGUN
Code
Multiple Kernel Learning
http://www.shogun-toolbox.org/
S. Sonnenburg, G. Rätsch, C. Schäfer, B. Schölkopf . Large scale multiple kernel learning. JMLR, 2006
SimpleMKL
Code
Multiple Kernel Learning
http://asi.insa-rouen.fr/enseignants/~arakotom/code/mklindex.html
A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet. Simplemkl. JMRL, 2008
OpenKernel.org
Code
Multiple Kernel Learning
http://www.openkernel.org/
F. Orabona and L. Jie. Ultra-fast optimization algorithm for sparse multi kernel learning. ICML, 2011
Matlab Functions for Multiple View Geometry
Code
Multiple View Geometry
http://www.robots.ox.ac.uk/~vgg/hzbook/code/
for Computer Vision and Image Processing
Code
Multiple View Geometry
http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/index.html
P. D. Kovesi. MATLAB and Octave Functions for Computer Vision and Image Processing,http://www.csse.uwa.edu.au/~pk/research/matlabfns
Patch-based Multi-view Stereo Software
Code
Multi-View Stereo
http://grail.cs.washington.edu/software/pmvs/
Y. Furukawa and J. Ponce, Accurate, Dense, and Robust Multi-View Stereopsis, PAMI 2009
Clustering Views for Multi-view Stereo
Code
Multi-View Stereo
http://grail.cs.washington.edu/software/cmvs/
Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski, Towards Internet-scale Multi-view Stereo, CVPR 2010
Multi-View Stereo Evaluation
Code
Multi-View Stereo
http://vision.middlebury.edu/mview/
S. Seitz et al. A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms, CVPR 2006
Spectral Hashing
Code
Nearest Neighbors Matching
http://www.cs.huji.ac.il/~yweiss/SpectralHashing/
Y. Weiss, A. Torralba, R. Fergus, Spectral Hashing, NIPS 2008
FLANN: Fast Library for Approximate Nearest Neighbors
Code
Nearest Neighbors Matching
http://www.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN
ANN: Approximate Nearest Neighbor Searching
Code
Nearest Neighbors Matching
http://www.cs.umd.edu/~mount/ANN/
LDAHash: Binary Descriptors for Matching in Large Image Databases
Code
Nearest Neighbors Matching
http://cvlab.epfl.ch/research/detect/ldahash/index.php
C. Strecha, A. M. Bronstein, M. M. Bronstein and P. Fua. LDAHash: Improved matching with smaller descriptors, PAMI, 2011.
Coherency Sensitive Hashing
Code
Nearest Neighbors Matching
http://www.eng.tau.ac.il/~simonk/CSH/index.html
S. Korman, S. Avidan, Coherency Sensitive Hashing, ICCV 2011
Learning in Hierarchical Architectures: from Neuroscience to Derived Kernels
Talk
Neuroscience
http://videolectures.net/mlss09us_poggio_lhandk/
Tomaso A. Poggio, McGovern Institute for Brain Research, Massachusetts Institute of Technology
Computer vision fundamentals: robust non-linear least-squares and their applications
Tutorial
Non-linear Least Squares
http://cvlab.epfl.ch/~fua/courses/lsq/
Pascal Fua, Vincent Lepetit, ICCV 2011 Tutorial
Non-rigid registration and reconstruction
Tutorial
Non-rigid registration
http://www.isr.ist.utl.pt/~adb/tutorial/
Alessio Del Bue, Lourdes Agapito, Adrien Bartoli, ICCV 2011 Tutorial
Geometry constrained parts based detection
Tutorial
Object Detection
http://ci2cv.net/tutorials/iccv-2011/
Simon Lucey, Jason Saragih, ICCV 2011 Tutorial
Max-Margin Hough Transform
Code
Object Detection
http://www.cs.berkeley.edu/~smaji/projects/max-margin-hough/
S. Maji and J. Malik, Object Detection Using a Max-Margin Hough Transform. CVPR 2009
Recognition using regions
Code
Object Detection
http://www.cs.berkeley.edu/~chunhui/publications/cvpr09_v2.zip
C. Gu, J. J. Lim, P. Arbelaez, and J. Malik, CVPR 2009
Poselet
Code
Object Detection
http://www.eecs.berkeley.edu/~lbourdev/poselets/
L. Bourdev, J. Malik, Poselets: Body Part Detectors Trained Using 3D Human Pose Annotations, ICCV 2009
A simple object detector with boosting
Code
Object Detection
http://people.csail.mit.edu/torralba/shortCourseRLOC/boosting/boosting.html
ICCV 2005 short courses on Recognizing and Learning Object Categories
Feature Combination
Code
Object Detection
http://www.vision.ee.ethz.ch/~pgehler/projects/iccv09/index.html
P. Gehler and S. Nowozin, On Feature Combination for Multiclass Object Detection, ICCV, 2009
Hough Forests for Object Detection
Code
Object Detection
http://www.vision.ee.ethz.ch/~gallju/projects/houghforest/index.html
J. Gall and V. Lempitsky, Class-Specific Hough Forests for Object Detection, CVPR, 2009
Cascade Object Detection with Deformable Part Models
Code
Object Detection
http://people.cs.uchicago.edu/~rbg/star-cascade/
P. Felzenszwalb, R. Girshick, D. McAllester. Cascade Object Detection with Deformable Part Models. CVPR, 2010
Discriminatively Trained Deformable Part Models
Code
Object Detection
http://people.cs.uchicago.edu/~pff/latent/
P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan.
A simple parts and structure object detector
Code
Object Detection
http://people.csail.mit.edu/fergus/iccv2005/partsstructure.html
ICCV 2005 short courses on Recognizing and Learning Object Categories
Object Recognition with Deformable Models
Talk
Object Detection
http://www.youtube.com/watch?v=_J_clwqQ4gI
Pedro Felzenszwalb, Brown University
Ensemble of Exemplar-SVMs for Object Detection and Beyond
Code
Object Detection
http://www.cs.cmu.edu/~tmalisie/projects/iccv11/
T. Malisiewicz, A. Gupta, A. A. Efros, Ensemble of Exemplar-SVMs for Object Detection and Beyond , ICCV 2011
Viola-Jones Object Detection
Code
Object Detection
http://pr.willowgarage.com/wiki/FaceDetection
P. Viola and M. Jones, Rapid Object Detection Using a Boosted Cascade of Simple Features, CVPR, 2001
Implicit Shape Model
Code
Object Detection
http://www.vision.ee.ethz.ch/~bleibe/code/ism.html
B. Leibe, A. Leonardis, B. Schiele. Robust Object Detection with Interleaved Categorization and Segmentation, IJCV, 2008
Multiple Kernels
Code
Object Detection
http://www.robots.ox.ac.uk/~vgg/software/MKL/
A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman, Multiple Kernels for Object Detection. ICCV, 2009
Ensemble of Exemplar-SVMs
Code
Object Detection
http://www.cs.cmu.edu/~tmalisie/projects/iccv11/
T. Malisiewicz, A. Gupta, A. Efros. Ensemble of Exemplar-SVMs for Object Detection and Beyond . ICCV, 2011
Using Multiple Segmentations to Discover Objects and their Extent in Image Collections
Code
Object Discovery
http://people.csail.mit.edu/brussell/research/proj/mult_seg_discovery/index.html
B. Russell, A. A. Efros, J. Sivic, W. T. Freeman, A. Zisserman, Using Multiple Segmentations to Discover Objects and their Extent in Image Collections, CVPR 2006
Objectness measure
Code
Object Proposal
http://www.vision.ee.ethz.ch/~calvin/objectness/objectness-release-v1.01.tar.gz
B. Alexe, T. Deselaers, V. Ferrari, What is an Object?, CVPR 2010
Parametric min-cut
Code
Object Proposal
http://sminchisescu.ins.uni-bonn.de/code/cpmc/
J. Carreira and C. Sminchisescu. Constrained Parametric Min-Cuts for Automatic Object Segmentation, CVPR 2010
Region-based Object Proposal
Code
Object Proposal
http://vision.cs.uiuc.edu/proposals/
I. Endres and D. Hoiem. Category Independent Object Proposals, ECCV 2010
Biologically motivated object recognition
Code
Object Recognition
http://cbcl.mit.edu/software-datasets/standardmodel/index.html
T. Serre, L. Wolf and T. Poggio. Object recognition with features inspired by visual cortex, CVPR 2005
Recognition by Association via Learning Per-exemplar Distances
Code
Object Recognition
http://www.cs.cmu.edu/~tmalisie/projects/cvpr08/dfuns.tar.gz
T. Malisiewicz, A. A. Efros, Recognition by Association via Learning Per-exemplar Distances, CVPR 2008
Sparse to Dense Labeling
Code
Object Segmentation
http://lmb.informatik.uni-freiburg.de/resources/binaries/SparseToDenseLabeling.tar.gz
P. Ochs, T. Brox, Object Segmentation in Video: A Hierarchical Variational Approach for Turning Point Trajectories into Dense Regions, ICCV 2011
ClassCut for Unsupervised Class Segmentation
Code
Object Segmentation
http://www.vision.ee.ethz.ch/~calvin/classcut/ClassCut-release.zip
B. Alexe, T. Deselaers and V. Ferrari, ClassCut for Unsupervised Class Segmentation, ECCV 2010
Geodesic Star Convexity for Interactive Image Segmentation
Code
Object Segmentation
http://www.robots.ox.ac.uk/~vgg/software/iseg/index.shtml
V. Gulshan, C. Rother, A. Criminisi, A. Blake and A. Zisserman. Geodesic star convexity for interactive image segmentation
Black and Anandan's Optical Flow
Code
Optical Flow
http://www.cs.brown.edu/~dqsun/code/ba.zip
Optical Flow Evaluation
Code
Optical Flow
http://vision.middlebury.edu/flow/
S. Baker et al. A Database and Evaluation Methodology for Optical Flow, IJCV, 2011
Optical Flow by Deqing Sun
Code
Optical Flow
http://www.cs.brown.edu/~dqsun/code/flow_code.zip
D. Sun, S. Roth, M. J. Black, Secrets of Optical Flow Estimation and Their Principles, CVPR, 2010
Horn and Schunck's Optical Flow
Code
Optical Flow
http://www.cs.brown.edu/~dqsun/code/hs.zip
Dense Point Tracking
Code
Optical Flow
http://lmb.informatik.uni-freiburg.de/resources/binaries/
N. Sundaram, T. Brox, K. Keutzer
Large Displacement Optical Flow
Code
Optical Flow
http://lmb.informatik.uni-freiburg.de/resources/binaries/
T. Brox, J. Malik, Large displacement optical flow: descriptor matching in variational motion estimation, PAMI 2011
Classical Variational Optical Flow
Code
Optical Flow
http://lmb.informatik.uni-freiburg.de/resources/binaries/
T. Brox, A. Bruhn, N. Papenberg, J. Weickert, High accuracy optical flow estimation based on a theory for warping, ECCV 2004
Optimization Algorithms in Machine Learning
Talk
Optimization
http://videolectures.net/nips2010_wright_oaml/
Stephen J. Wright, Computer Sciences Department, University of Wisconsin - Madison
Convex Optimization
Talk
Optimization
http://videolectures.net/mlss2011_vandenberghe_convex/
Lieven Vandenberghe, Electrical Engineering Department, University of California, Los Angeles
Energy Minimization with Label costs and Applications in Multi-Model Fitting
Talk
Optimization
http://videolectures.net/nipsworkshops2010_boykov_eml/
Yuri Boykov, Department of Computer Science, University of Western Ontario
Who is Afraid of Non-Convex Loss Functions?
Talk
Optimization
http://videolectures.net/eml07_lecun_wia/
Yann LeCun, New York University
Optimization Algorithms in Support Vector Machines
Talk
Optimization and Support Vector Machines
http://videolectures.net/mlss09us_wright_oasvm/
Stephen J. Wright, Computer Sciences Department, University of Wisconsin - Madison
Training Deformable Models for Localization
Code
Pose Estimation
http://www.ics.uci.edu/~dramanan/papers/parse/index.html
Ramanan, D. "Learning to Parse Images of Articulated Bodies." NIPS 2006
Articulated Pose Estimation using Flexible Mixtures of Parts
Code
Pose Estimation
http://phoenix.ics.uci.edu/software/pose/
Y. Yang, D. Ramanan, Articulated Pose Estimation using Flexible Mixtures of Parts, CVPR 2011
Calvin Upper-Body Detector
Code
Pose Estimation
http://www.vision.ee.ethz.ch/~calvin/calvin_upperbody_detector/
E. Marcin, F. Vittorio, Better Appearance Models for Pictorial Structures, BMVC 2009
Estimating Human Pose from Occluded Images
Code
Pose Estimation
http://faculty.ucmerced.edu/mhyang/code/accv09_pose.zip
J.-B. Huang and M.-H. Yang, Estimating Human Pose from Occluded Images, ACCV 2009
Relative Entropy
Talk
Relative Entropy
http://videolectures.net/nips09_verdu_re/
Sergio Verdu, Princeton University
Saliency-based video segmentation
Code
Saliency Detection
http://www.brl.ntt.co.jp/people/akisato/saliency3.html
K. Fukuchi, K. Miyazato, A. Kimura, S. Takagi and J. Yamato, Saliency-based video segmentation with graph cuts and sequentially updated priors, ICME 2009
Saliency Using Natural statistics
Code
Saliency Detection
http://cseweb.ucsd.edu/~l6zhang/
L. Zhang, M. Tong, T. Marks, H. Shan, and G. Cottrell. Sun: A bayesian framework for saliency using natural statistics. Journal of Vision, 2008
Context-aware saliency detection
Code
Saliency Detection
http://webee.technion.ac.il/labs/cgm/Computer-Graphics-Multimedia/Software/Saliency/Saliency.html
S. Goferman, L. Zelnik-Manor, and A. Tal. Context-aware saliency detection. In CVPR, 2010.
Learning to Predict Where Humans Look
Code
Saliency Detection
http://people.csail.mit.edu/tjudd/WherePeopleLook/index.html
T. Judd and K. Ehinger and F. Durand and A. Torralba, Learning to Predict Where Humans Look, ICCV, 2009
Graph-based visual saliency
Code
Saliency Detection
http://www.klab.caltech.edu/~harel/share/gbvs.php
J. Harel, C. Koch, and P. Perona. Graph-based visual saliency. NIPS, 2007
Discriminant Saliency for Visual Recognition from Cluttered Scenes
Code
Saliency Detection
http://www.svcl.ucsd.edu/projects/saliency/
D. Gao and N. Vasconcelos, Discriminant Saliency for Visual Recognition from Cluttered Scenes, NIPS, 2004
Global Contrast based Salient Region Detection
Code
Saliency Detection
http://cg.cs.tsinghua.edu.cn/people/~cmm/saliency/
M.-M. Cheng, G.-X. Zhang, N. J. Mitra, X. Huang, S.-M. Hu. Global Contrast based Salient Region Detection. CVPR, 2011
Itti, Koch, and Niebur' saliency detection
Code
Saliency Detection
http://www.saliencytoolbox.net/
L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysis. PAMI, 1998
Learning Hierarchical Image Representation with Sparsity, Saliency and Locality
Code
Saliency Detection
J. Yang and M.-H. Yang, Learning Hierarchical Image Representation with Sparsity, Saliency and Locality, BMVC 2011
Spectrum Scale Space based Visual Saliency
Code
Saliency Detection
http://www.cim.mcgill.ca/~lijian/saliency.htm
J Li, M D. Levine, X An and H. He, Saliency Detection Based on Frequency and Spatial Domain Analyses, BMVC 2011
Attention via Information Maximization
Code
Saliency Detection
http://www.cse.yorku.ca/~neil/AIM.zip
N. Bruce and J. Tsotsos. Saliency based on information maximization. In NIPS, 2005
Saliency detection: A spectral residual approach
Code
Saliency Detection
http://www.klab.caltech.edu/~xhou/projects/spectralResidual/spectralresidual.html
X. Hou and L. Zhang. Saliency detection: A spectral residual approach. CVPR, 2007
Saliency detection using maximum symmetric surround
Code
Saliency Detection
http://ivrg.epfl.ch/supplementary_material/RK_ICIP2010/index.html
R. Achanta and S. Susstrunk. Saliency detection using maximum symmetric surround. In ICIP, 2010
Frequency-tuned salient region detection
Code
Saliency Detection
http://ivrgwww.epfl.ch/supplementary_material/RK_CVPR09/index.html
R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk. Frequency-tuned salient region detection. In CVPR, 2009
Segmenting salient objects from images and videos
Code
Saliency Detection
http://www.cse.oulu.fi/MVG/Downloads/saliency
E. Rahtu, J. Kannala, M. Salo, and J. Heikkila. Segmenting salient objects from images and videos. CVPR, 2010
Diffusion Geometry Methods in Shape Analysis
Tutorial
Shape Analysis, Diffusion Geometry
http://tosca.cs.technion.ac.il/book/course_eccv10.html
A. Brontein and M. Bronstein, ECCV 2010 Tutorial
Source Code Collection for Reproducible Research
Link
Source code
http://www.csee.wvu.edu/~xinl/reproducible_research.html
collected by Xin Li, Lane Dept of CSEE, West Virginia University
Computer Vision Algorithm Implementations
Link
Source code
http://www.cvpapers.com/rr.html
CVPapers
Robust Sparse Coding for Face Recognition
Code
Sparse Representation
http://www4.comp.polyu.edu.hk/~cslzhang/code/RSC.zip
M. Yang, L. Zhang, J. Yang and D. Zhang, “Robust Sparse Coding for Face Recognition,” CVPR 2011
Sparse coding simulation software
Code
Sparse Representation
http://redwood.berkeley.edu/bruno/sparsenet/
Olshausen BA, Field DJ, "Emergence of Simple-Cell Receptive Field Properties by Learning a Sparse Code for Natural Images", Nature 1996
Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing
Code
Sparse Representation
http://www.cs.technion.ac.il/~elad/Various/Matlab-Package-Book.rar
M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing
Fisher Discrimination Dictionary Learning for Sparse Representation
Code
Sparse Representation
http://www4.comp.polyu.edu.hk/~cslzhang/code/FDDL.zip
M. Yang, L. Zhang, X. Feng and D. Zhang, Fisher Discrimination Dictionary Learning for Sparse Representation, ICCV 2011
Efficient sparse coding algorithms
Code
Sparse Representation
http://ai.stanford.edu/~hllee/softwares/nips06-sparsecoding.htm
H. Lee, A. Battle, R. Rajat and A. Y. Ng, Efficient sparse coding algorithms, NIPS 2007
A Linear Subspace Learning Approach via Sparse Coding
Code
Sparse Representation
http://www4.comp.polyu.edu.hk/~cslzhang/code/LSL_SC.zip
L. Zhang, P. Zhu, Q. Hu and D. Zhang, “A Linear Subspace Learning Approach via Sparse Coding,” ICCV 2011
SPArse Modeling Software
Code
Sparse Representation
http://www.di.ens.fr/willow/SPAMS/
J. Mairal, F. Bach, J. Ponce and G. Sapiro. Online Learning for Matrix Factorization and Sparse Coding, JMLR 2010
Sparse Methods for Machine Learning: Theory and Algorithms
Talk
Sparse Representation
http://videolectures.net/nips09_bach_smm/
Francis R. Bach, INRIA
Centralized Sparse Representation for Image Restoration
Code
Sparse Representation
http://www4.comp.polyu.edu.hk/~cslzhang/code/CSR_IR.zip
W. Dong, L. Zhang and G. Shi, “Centralized Sparse Representation for Image Restoration,” ICCV 2011
A Tutorial on Spectral Clustering
Tutorial
Spectral Clustering
http://web.mit.edu/~wingated/www/introductions/tutorial_on_spectral_clustering.pdf
Ulrike von Luxburg, Max Planck Institute for Biological Cybernetics
Statistical Learning Theory
Talk
Statistical Learning Theory
http://videolectures.net/mlss04_taylor_slt/
John Shawe-Taylor, Centre for Computational Statistics and Machine Learning, University College London
Stereo Evaluation
Code
Stereo
http://vision.middlebury.edu/stereo/
D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms, IJCV 2001
Constant-Space Belief Propagation
Code
Stereo
http://www.cs.cityu.edu.hk/~qiyang/publications/code/cvpr-10-csbp/csbp.htm
Q. Yang, L. Wang, and N. Ahuja, A Constant-Space Belief Propagation Algorithm for Stereo Matching, CVPR 2010
libmv
Code
Structure from motion
http://code.google.com/p/libmv/
Structure from Motion toolbox for Matlab by Vincent Rabaud
Code
Structure from motion
http://code.google.com/p/vincents-structure-from-motion-matlab-toolbox/
FIT3D
Code
Structure from motion
http://www.fit3d.info/
VisualSFM : A Visual Structure from Motion System
Code
Structure from motion
http://www.cs.washington.edu/homes/ccwu/vsfm/
Structure and Motion Toolkit in Matlab
Code
Structure from motion
http://cms.brookes.ac.uk/staff/PhilipTorr/Code/code_page_4.htm
Nonrigid Structure from Motion
Tutorial
Structure from motion
http://www.cs.cmu.edu/~yaser/ECCV2010Tutorial.html
Y. Sheikh and Sohaib Khan, ECCV 2010 Tutorial
Bundler
Code
Structure from motion
http://phototour.cs.washington.edu/bundler/
N. Snavely, S M. Seitz, R Szeliski. Photo Tourism: Exploring image collections in 3D. SIGGRAPH 2006
Nonrigid Structure From Motion in Trajectory Space
Code
Structure from motion
http://cvlab.lums.edu.pk/nrsfm/index.html
OpenSourcePhotogrammetry
Code
Structure from motion
http://opensourcephotogrammetry.blogspot.com/
Structured Prediction and Learning in Computer Vision
Tutorial
Structured Prediction
http://www.nowozin.net/sebastian/cvpr2011tutorial/
S. Nowozin and C. Lampert, CVPR 2011 Tutorial
Generalized Principal Component Analysis
Code
Subspace Learning
http://www.vision.jhu.edu/downloads/main.php?dlID=c1
R. Vidal, Y. Ma and S. Sastry. Generalized Principal Component Analysis (GPCA), CVPR 2003
Text recognition in the wild
Code
Text Recognition
http://vision.ucsd.edu/~kai/grocr/
K. Wang, B. Babenko, and S. Belongie, End-to-end Scene Text Recognition, ICCV 2011
Neocognitron for handwritten digit recognition
Code
Text Recognition
http://visiome.neuroinf.jp/modules/xoonips/detail.php?item_id=375
K. Fukushima: "Neocognitron for handwritten digit recognition", Neurocomputing, 2003
Image Quilting for Texture Synthesis and Transfer
Code
Texture Synthesis
http://www.cs.cmu.edu/~efros/quilt_research_code.zip
A. A. Efros and W. T. Freeman, Image Quilting for Texture Synthesis and Transfer, SIGGRAPH 2001
Variational methods for computer vision
Tutorial
Variational Calculus
http://cvpr.in.tum.de/tutorials/iccv2011
Daniel Cremers, Bastian Goldlucke, Thomas Pock, ICCV 2011 Tutorial
Variational Methods in Computer Vision
Tutorial
Variational Calculus
http://cvpr.cs.tum.edu/tutorials/eccv2010
D. Cremers, B. Goldlücke, T. Pock, ECCV 2010 Tutorial
Understanding Visual Scenes
Talk
Visual Recognition
http://videolectures.net/nips09_torralba_uvs/
Antonio Torralba, MIT
Visual Recognition, University of Texas at Austin, Fall 2011
Course
Visual Recognition
http://www.cs.utexas.edu/~grauman/courses/fall2011/schedule.html
Kristen Grauman
Tracking using Pixel-Wise Posteriors
Code
Visual Tracking
http://www.robots.ox.ac.uk/~cbibby/research_pwp.shtml
C. Bibby and I. Reid, Tracking using Pixel-Wise Posteriors, ECCV 2008
Visual Tracking with Histograms and Articulating Blocks
Code
Visual Tracking
http://www.cise.ufl.edu/~smshahed/tracking.htm
S. M. Shshed Nejhum, J. Ho, and M.-H.Yang, Visual Tracking with Histograms and Articulating Blocks, CVPR 2008
Lucas-Kanade affine template tracking
Code
Visual Tracking
http://www.mathworks.com/matlabcentral/fileexchange/24677-lucas-kanade-affine-template-tracking
S. Baker and I. Matthews, Lucas-Kanade 20 Years On: A Unifying Framework, IJCV 2002
Visual Tracking Decomposition
Code
Visual Tracking
http://cv.snu.ac.kr/research/~vtd/
J Kwon and K. M. Lee, Visual Tracking Decomposition, CVPR 2010
GPU Implementation of Kanade-Lucas-Tomasi Feature Tracker
Code
Visual Tracking
http://cs.unc.edu/~ssinha/Research/GPU_KLT/
S. N Sinha, J.-M. Frahm, M. Pollefeys and Y. Genc, Feature Tracking and Matching in Video Using Programmable Graphics Hardware, MVA, 2007
Motion Tracking in Image Sequences
Code
Visual Tracking
http://www.cs.berkeley.edu/~flw/tracker/
C. Stauffer and W. E. L. Grimson. Learning patterns of activity using real-time tracking, PAMI, 2000
Particle Filter Object Tracking
Code
Visual Tracking
http://blogs.oregonstate.edu/hess/code/particles/
Tracking with Online Multiple Instance Learning
Code
Visual Tracking
http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml
B. Babenko, M.-H. Yang, S. Belongie, Visual Tracking with Online Multiple Instance Learning, PAMI 2011
KLT: An Implementation of the Kanade-Lucas-Tomasi Feature Tracker
Code
Visual Tracking
http://www.ces.clemson.edu/~stb/klt/
B. D. Lucas and T. Kanade. An Iterative Image Registration Technique with an Application to Stereo Vision. IJCAI, 1981
Superpixel Tracking
Code
Visual Tracking
http://faculty.ucmerced.edu/mhyang/papers/iccv11a.html
S. Wang, H. Lu, F. Yang, and M.-H. Yang, Superpixel Tracking, ICCV 2011
L1 Tracking
Code
Visual Tracking
http://www.dabi.temple.edu/~hbling/code_data.htm
X. Mei and H. Ling, Robust Visual Tracking using L1 Minimization, ICCV, 2009
Online Discriminative Object Tracking with Local Sparse Representation
Code
Visual Tracking
http://faculty.ucmerced.edu/mhyang/code/wacv12a_code.zip
Q. Wang, F. Chen, W. Xu, and M.-H. Yang, Online Discriminative Object Tracking with Local Sparse Representation, WACV 2012
Incremental Learning for Robust Visual Tracking
Code
Visual Tracking
http://www.cs.toronto.edu/~dross/ivt/
D. Ross, J. Lim, R.-S. Lin, M.-H. Yang, Incremental Learning for Robust Visual Tracking, IJCV 2007
Online boosting trackers
Code
Visual Tracking
http://www.vision.ee.ethz.ch/boostingTrackers/
H. Grabner, and H. Bischof, On-line Boosting and Vision, CVPR, 2006
Globally-Optimal Greedy Algorithms for Tracking a Variable Number of Objects
Code
Visual Tracking
http://www.ics.uci.edu/~hpirsiav/papers/tracking_cvpr11_release_v1.0.tar.gz
H. Pirsiavash, D. Ramanan, C. Fowlkes. "Globally-Optimal Greedy Algorithms for Tracking a Variable Number of Objects, CVPR 2011
Object Tracking
Code
Visual Tracking
http://plaza.ufl.edu/lvtaoran/object tracking.htm