个人主页:元清加油_【C++】,【C语言】,【数据结构与算法】-CSDN博客
个人专栏
力扣递归算法题
http://t.csdnimg.cn/yUl2I
【C++】
http://t.csdnimg.cn/6AbpV
数据结构与算法
http://t.csdnimg.cn/hKh2l
前言:这个专栏主要讲述动态规划算法,所以下面题目主要也是这些算法做的
我讲述题目会把讲解部分分为3个部分:
1、题目解析
2、算法原理思路讲解
3、代码实现
题目链接:买卖股票的最佳时机 III
题目
给定一个数组,它的第 i
个元素是一支给定的股票在第 i
天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入:prices = [3,3,5,0,0,3,1,4] 输出:6 解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。 随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3 。
示例 2:
输入:prices = [1,2,3,4,5] 输出:4 解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。 注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。 因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
示例 3:
输入:prices = [7,6,4,3,1] 输出:0 解释:在这个情况下, 没有交易完成, 所以最大利润为 0。
示例 4:
输入:prices = [1] 输出:0
提示:
1 <= prices.length <= 105
0 <= prices[i] <= 105
我们这题使用动态规划,我们做这类题目可以分为以下五个步骤
从「上往下填」每⼀⾏,每⼀⾏「从左往右」,两个表「⼀起填」。
class Solution {
public:
const int INF = 0x3f3f3f3f;
int maxProfit(vector& prices)
{
int n = prices.size();
vector> f(n, vector(3, -INF));
auto g = f;
// 初始化
f[0][0] = -prices[0];
g[0][0] = 0;
for(int i = 1; i < n; i++)
{
for(int j = 0; j < 3; j++)
{
f[i][j] = max(f[i - 1][j], g[i - 1][j] - prices[i]);
g[i][j] = g[i - 1][j];
if(j >= 1) // 如果该状态存在
{
g[i][j] = max(g[i][j], f[i - 1][j - 1] + prices[i]);
}
}
}
// 找到最后⼀⾏的最⼤值
int ret = 0;
for(int j = 0; j < 3; j++)
{
ret = max(ret, g[n - 1][j]);
}
return ret;
}
};