PKU 3667 HDOJ 3667 Hotel ACM 3667 IN HDU

MiYu原创, 转帖请注明 : 转载自 ______________白白の屋    

 

题目地址 :

http://poj.org/problem?id=3667

题目描述:

Hotel
Time Limit: 3000MS Memory Limit: 65536K
Total Submissions: 2993 Accepted: 1143

Description

The cows are journeying north to Thunder Bay in Canada to gain cultural enrichment and enjoy a vacation on the sunny shores of Lake Superior. Bessie, ever the competent travel agent, has named the Bullmoose Hotel on famed Cumberland Street as their vacation residence. This immense hotel has N (1 ≤ N ≤ 50,000) rooms all located on the same side of an extremely long hallway (all the better to see the lake, of course).

The cows and other visitors arrive in groups of size Di (1 ≤ Di ≤ N) and approach the front desk to check in. Each group i requests a set of Di contiguous rooms from Canmuu, the moose staffing the counter. He assigns them some set of consecutive room numbers r..r+Di-1 if they are available or, if no contiguous set of rooms is available, politely suggests alternate lodging. Canmuu always chooses the value of r to be the smallest possible.

Visitors also depart the hotel from groups of contiguous rooms. Checkout i has the parameters Xi and Di which specify the vacating of rooms Xi ..Xi +Di-1 (1 ≤ Xi ≤ N-Di+1). Some (or all) of those rooms might be empty before the checkout.

Your job is to assist Canmuu by processing M (1 ≤ M < 50,000) checkin/checkout requests. The hotel is initially unoccupied.

Input

* Line 1: Two space-separated integers: N and M
* Lines 2..M+1: Line i+1 contains request expressed as one of two possible formats: (a) Two space separated integers representing a check-in request: 1 and D(b) Three space-separated integers representing a check-out: 2, Xi, andDi

Output

* Lines 1.....: For each check-in request, output a single line with a single integer r, the first room in the contiguous sequence of rooms to be occupied. If the request cannot be satisfied, output 0.

Sample Input

10 6

1 3

1 3

1 3

1 3

2 5 5

1 6

Sample Output

1

4

7

0

5

 

 题目分析:

  题目打大意就是 找一段最左边的满足要求的线段.

右下面几种操作 :

1: 插入线段

2: 删除线段

上面2种操作可以同一个函数实现, 只需要传一个标志量就行

3: 查询可用区间

题目的数据意思 : 1 3   表示 要申请最左边的满足要求的线段, 输出线段的左端点, 同时更新线段树,   没有满足要求的线段时输出0 , 这时不要更新线段 !!! 这里WA几次 杯具

       2 5 5 表示 删除以5为左端点, 长为5 的线段  , 就是 删除[5,9].    

具体请看 代码注释 :

 

代码
/*
Mail to   : [email protected]
Link      : 
http://www.cnblogs.com/MiYu   ||  http://www.cppblog.com/MiYu
Author By : MiYu
Test      : 1
Complier  : g++ mingw32-3.4.2
Program   : PKU_3667
Doc Name  : HOTEL
*/
// #pragma warning( disable:4789 )
#include  < iostream >
#include 
< fstream >
#include 
< sstream >
#include 
< algorithm >
#include 
< string >
#include 
< set >
#include 
< map >
#include 
< utility >
#include 
< queue >
#include 
< stack >
#include 
< list >
#include 
< vector >
#include 
< cstdio >
#include 
< cstdlib >
#include 
< cstring >
#include 
< cmath >
#include 
< ctime >
using   namespace  std;
inline 
int  max (  int  a,  int  b ) {
       
return  a  >  b  ?  a : b;       
}
struct  segTree {
       
int  left, right, lVal, rVal, mVal, cov; //  cov -- >  0: 线段为空   1: 线段为满  -1:2种情况都有 
        int  mid () {  return  (left + right) >> 1 ; }
       
int  dis () {  return  right  -  left  +   1 ; }
       
void   set  (  int  flag ) {  //  0: 线段为空   1: 线段为满 
             if  ( flag ){
                 cov 
=   1 ;
                 lVal 
=  rVal  =  mVal  =   0 ;  
            } 
else  {
                 cov 
=   0 ;
                 lVal 
=  rVal  =  mVal  =  right  -  left  +   1 ;     
            }
       }     
}seg[
160000 ];
void  creat (  int  left,  int  right,  int  rt  =   1  ) {    //  初始化线段 
     seg[rt].left  =  left;
     seg[rt].right 
=  right;
     seg[rt].
set  ( 0 );
     
if  ( left  ==  right )  return ;
     
int  LL  =  rt  <<   1 , RR  =  rt  <<   1   |   1 , mid  =  seg[rt].mid();  
     creat ( left, mid, LL );
     creat ( mid 
+   1 , right, RR );  
}
void  modify (  int  left,  int  right,  int  flag,  int  rt  =   1  ) {
     
if  ( seg[rt].left  >=  left  &&  seg[rt].right  <=  right ) {    // 如果线段被覆盖,  直接按flag标记处理,返回 
         seg[rt]. set  ( flag );    return ;
     }     
     
int  LL  =  rt  <<   1 , RR  =  rt  <<   1   |   1 , mid  =  seg[rt].mid();
     
if  ( seg[rt].cov  !=   - 1  ) {      //  如果线段不是混合情况(即线段是被覆盖的), 把标志下传 
          seg[LL].cov  =  seg[RR].cov  =  seg[rt].cov;
          seg[LL].
set  ( seg[LL].cov );   
          seg[RR].
set  ( seg[RR].cov );
     } 
     
if  ( right  <=  mid ) modify ( left, right, flag, LL );     // 递归更新线段 
      else   if  ( left  >  mid ) modify ( left, right, flag, RR );
     
else  {
           modify ( left, mid, flag, LL );
           modify ( mid 
+   1 , right, flag, RR );     
     }
     
if  ( seg[LL].cov  ==   0   &&  seg[RR].cov  ==   0  ) seg[rt].cov  =   0 // 线段为空 
      else   if  ( seg[LL].cov  ==   1   &&  seg[RR].cov  ==   1  ) seg[rt].cov  =   1 // 线段满 
      else  seg[rt].cov  =   - 1 ;   //  2种情况都有 
     seg[rt].mVal  =  max(seg[LL].rVal + seg[RR].lVal,max(seg[LL].mVal, seg[RR].mVal)); // 线段的更新,  经典部分
     seg[rt].lVal 
=  seg[LL].lVal  +  ( seg[LL].cov  ==   0   ?  seg[RR].lVal :  0  );
     seg[rt].rVal 
=  seg[RR].rVal  +  ( seg[RR].cov  ==   0   ?  seg[LL].rVal :  0  );
}
int  query (  int  val,  int  rt  =   1  ) {
    
int  LL  =  rt  <<   1 , RR  =  rt  <<   1   |   1 , mid  =  seg[rt].mid();
    
if  ( seg[rt].cov  ==   0   &&  seg[rt].mVal  >=  val ) {    // 线段为空,且可用,直接返回线段左端点 
              return  seg[rt].left;
    } 
else   if  ( seg[rt].cov  ==   - 1  ) {    // 分三种 情况处理  左   左右    右  处理   
          if  ( seg[LL].mVal  >=  val )  return  query ( val, LL );
         
else   if  ( seg[LL].rVal  +  seg[RR].lVal  >=  val )  return  mid  -  seg[LL].rVal  +   1 ;
         
else   if  ( seg[RR].mVal  >=  val ) return  query ( val, RR );  
    }   
    
return   0 ;
}
int  main ()
{
    
int  N, M, left, right, val, choice;
    
while  ( scanf (  " %d%d " & N, & M )  ==   2  ) {
           creat ( 
1 , N );
           
while  ( M  --  ) {
                  scanf ( 
" %d " & choice );
                  
switch  ( choice ) {
                          
case   1  : scanf (  " %d " , & val );
                                   printf ( 
" %d\n " , left  =  query ( val ) );
                                   
if  ( left  !=   0  ) {
                                        right 
=  left  +  val  -   1 ;
                                        modify ( left, right, 
1  );
                                   }
                                   
break ;
                          
case   2  : scanf (  " %d%d " , & left,  & val );
                                   right 
=  left  +  val  -   1 ;
                                   modify ( left, right, 
0  );
                                   
break ;       
                  }       
           }      
    }
    
return   0 ;
}

 

 

你可能感兴趣的:(ACM)