动态规划基础(二)最长公共子序列 LCS

讲解求两个串中最长的公共的子序列长度或输出子序列等
poj1458

题目大意

给定两个字符串,要求输出两个字符串中最长公共子序列长度

思路

我们定义 a [ i ] [ j ] a[i][j] a[i][j]为,当字串 s t r 1 str1 str1 i i i位置,字串 s t r 2 str2 str2 j j j位置时,最长公共子串的长度,我们有如下关系式:
i f if if s t r 1 [ i ] = = s t r 2 [ j ] , a [ i ] [ j ] = a [ i − 1 ] [ j − 1 ] + 1 str1[i]==str2[j],a[i][j]=a[i-1][j-1]+1 str1[i]==str2[j],a[i][j]=a[i1][j1]+1
e l s e else else a [ i ] [ j ] = m a x ( a [ i − 1 ] [ j ] , a [ i ] [ j − 1 ] a[i][j]=max(a[i-1][j],a[i][j-1] a[i][j]=max(a[i1][j],a[i][j1]
最后打印即可

ACcode

#include

using namespace std;

int a[1005][1005];

int main()
{
    ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    string str1, str2;
    while (cin >> str1 >> str2) {
        int len1 = str1.size();
        int len2 = str2.size();

        for (int i = 0;i <= len1;i++)a[i][0] = 0;
        for (int j = 0;j <= len2;j++)a[0][j] = 0;

        for (int i = 1;i <= len1;i++) {
            for (int j = 1;j <= len2;j++) {
                if (str1[i - 1] == str2[j - 1])a[i][j] = a[i - 1][j - 1] + 1;
                else a[i][j] = max(a[i - 1][j], a[i][j - 1]);
            }
        }
        cout << a[len1][len2] << '\n';
    }
    return 0;
} 

你可能感兴趣的:(动态规划,动态规划,算法)