YOLOv8改进 | Conv篇 | 2024.1月最新成果可变形卷积DCNv4(适用检测、Seg、分类、Pose、OBB)

一、本文介绍

本文给大家带来的改进机制是2024-1月的最新成果DCNv4,其是DCNv3的升级版本,效果可以说是在目前的卷积中名列前茅了,同时该卷积具有轻量化的效果!一个DCNv4参数量下降越15Wparameters左右,。它主要通过两个方面对前一版本DCNv3进行改进:首先,它移除了空间聚合中的softmax归一化,这样做增强了其动态特性和表达能力;其次,它优化了内存访问过程,以减少冗余操作,从而加快处理速度。DCNv4的表现可以说是非常的全面,同时该网络为新发目前存在大量使用Bug我均已修复。欢迎大家订阅本专栏,本专栏每周更新3-5篇最新机制,更有包含我所有改进的文件和交流群提供给大家。欢迎大家订阅我的专栏一起学习YOLO!

YOLOv8改进 | Conv篇 | 2024.1月最新成果可变形卷积DCNv4(适用检测、Seg、分类、Pose、OBB)_第1张图片

你可能感兴趣的:(YOLOv8有效涨点专栏,深度学习,人工智能,YOLO,目标检测,计算机视觉,python,pytorch)