算法训练营Day46(动态规划8之多重背包)

多重背包

关于 多重背包,力扣上没有相关的题目,所以今天的重点就是回顾一波 自己做的背包题目

本题力扣上没有原题,大家可以去卡码网第56题 (opens new window)去练习

简单介绍

有N种物品和一个容量为V 的背包。第i种物品最多有Mi件可用,每件耗费的空间是Ci ,价值是Wi 。求解将哪些物品装入背包可使这些物品的耗费的空间 总和不超过背包容量,且价值总和最大。

多重背包和01背包是非常像的, 为什么和01背包像呢?

每件物品最多有Mi件可用,把Mi件摊开,其实就是一个01背包问题了。

说明

多重背包在面试中基本不会出现,力扣上也没有对应的题目,对多重背包的掌握程度知道它是一种01背包,并能在01背包的基础上写出对应代码就可以了

 139.单词拆分 力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台

提醒

本题是求排列数,对顺序有要求 

一、动态规划之完全背包(一刷不理解)

class Solution:
    def wordBreak(self, s: str, wordDict: List[str]) -> bool:
        wordSet = set(wordDict)
        n = len(s)
        dp = [False] * (n + 1)  # dp[i] 表示字符串的前 i 个字符是否可以被拆分成单词
        dp[0] = True  # 初始状态,空字符串可以被拆分成单词

        for i in range(1, n + 1): # 遍历背包
            for j in range(i): # 遍历单词
                if dp[j] and s[j:i] in wordSet:
                    dp[i] = True  # 如果 s[0:j] 可以被拆分成单词,并且 s[j:i] 在单词集合中存在,则 s[0:i] 可以被拆分成单词
                    break

        return dp[n]

疑惑

为什么要 dp[0] 表示空字符串

递推公式的推导

二、回溯算法 

class Solution:
    def backtracking(self, s: str, wordSet: set[str], startIndex: int) -> bool:
        # 边界情况:已经遍历到字符串末尾,返回True
        if startIndex >= len(s):
            return True

        # 遍历所有可能的拆分位置
        for i in range(startIndex, len(s)):
            word = s[startIndex:i + 1]  # 截取子串
            if word in wordSet and self.backtracking(s, wordSet, i + 1):
                # 如果截取的子串在字典中,并且后续部分也可以被拆分成单词,返回True
                return True

        # 无法进行有效拆分,返回False
        return False

    def wordBreak(self, s: str, wordDict: List[str]) -> bool:
        wordSet = set(wordDict)  # 转换为哈希集合,提高查找效率
        return self.backtracking(s, wordSet, 0)

背包问题总结篇  代码随想录

一刷没时间,二刷再来进行总结

你可能感兴趣的:(算法,动态规划)