- 每天一篇逻辑漏洞
不灭锦鲤
学习
前言:水一篇文章,今天也没有去挖洞内容:学了那么多了,还没有长进,是不是我的学习方法有问题但是到底哪里有问题呢,我又不知道,我好像好久没有总结了,应该写一篇日记,然后总结的一篇文章,然后把日记的内容丢里面,感觉就挺好了,就不用去找文章了好了就这样,进入正题好了,今天学会伪造了jsonp的xss,就是说是json格式的话,不是jsonp格式,可以尝试在url后面加上callback,看是否有返回值
- 2020-10-09
weixin_45660257
笔记
java学习集合的目标1.会使用集合存储数据2.会遍历集合,把数据取出来3.掌握每种集合的特性集合框架的学习方法方式1.学习顶层:学习顶层接口,抽象类中共性的方法,所有的子类创建对象使用Collection接口定义的是所有的单列集合中共性的方法所有的单列集合都可以使用共性的方法没有带索引的方法继承:子类共性抽取形成父类(接口)List接口1.有序的集合(存储和取出元素顺序相同)2.允许存储重复的元
- 强化学习在机器人控制中的应用:从理论到实践
Echo_Wish
前沿技术人工智能机器人
强化学习在机器人控制中的应用:从理论到实践大家好,我是你们熟悉的人工智能与Python领域自媒体创作者Echo_Wish。今天我们来聊聊一个炙手可热的话题——强化学习在机器人控制中的应用。近年来,随着人工智能技术的飞速发展,机器人在各个领域的应用越来越广泛。而强化学习作为一种重要的机器学习方法,为机器人控制提供了强有力的技术支持。接下来,让我们一起探讨强化学习在机器人控制中的原理和实践,并通过具体
- 目标检测代码示例(基于Python和OpenCV)
matlab_python22
计算机视觉
引言目标检测是计算机视觉领域中的一个核心任务,其目标是在图像或视频中定位和识别特定对象。随着技术的发展,目标检测算法不断演进,从传统的基于手工特征的方法到现代的深度学习方法,再到基于Transformer的架构,目标检测技术已经取得了显著的进步。本文将总结和对比几种主要的目标检测算法,探讨它们的优势、劣势和适用场景。1.目标检测算法分类1.1单阶段检测(One-Stage)与双阶段检测(Two-S
- |网络安全|网络安全学习方法
网络安全King
web安全学习方法安全
1、先网络后安全很多初学者还没搞定网络看懂网络拓扑,就急着研究防火墙或VPN,其实这样就不清楚整个网络架构是如何安全演进的。正确的流程是:先通过网络协议和拓扑设计的学习,能独立搭建一个企业网/校园网,再引入局域网安全、防火墙、入侵检测、VPN等安全技术,使整个网络慢慢变得安全起来,这样才能看到整个网络安全的全貌。2、勤做实验勤抓包目前各大网络和安全厂商都有对应的模拟器,不再需要硬件支持就可以在电脑
- 一、系统分析师考试介绍
Rainbow酱
系统分析系统分析软考
科目1考点考试介绍考试报名、考试科目、大纲及考点分析、证书价值、常见问题。视频课程规划、推荐资料、学习方法。计算机组成与结构数据的表示:进制转换、编码表示、逻辑运算、浮点数。校验码:奇偶校验码、循环冗余校验码、海明校验码。计算机硬件:硬件组成、CPU、寄存器等。计算机指令:寻址方式、指令流水线计算。计算机体系结构:Flynn分类,指令系统CISC和RISC。计算机存储系统:分级存储、cache、存
- 17.推荐系统的在线学习与实时更新
郑万通
推荐系统
接下来就讲解推荐系统的在线学习与实时更新。推荐系统的在线学习和实时更新是为了使推荐系统能够动态地适应用户行为的变化,保持推荐结果的实时性和相关性。以下是详细的介绍和实现方法。推荐系统的在线学习与实时更新在线学习的概念在线学习(OnlineLearning)是一种机器学习方法,与传统的批量学习(BatchLearning)不同,在线学习模型能够在数据流到达时逐步更新,而不是在整个数据集上训练一次。这
- KDD 2023 | 先睹为快!KDD 2023论文合集50篇(附下载地址)
马拉AI
机器学习人工智能深度学习
下载地址:点我跳转1.DoubleAdapt:AMeta-learningApproachtoIncrementalLearningforStockTrendForecastingCode:NoneArea:一种用于股票趋势预测增量学习的元学习方法2.HomoGCL:RethinkingHomophilyinGraphContrastiveLearningCode:https://github.c
- 对DeepSeek-R1通过强化学习提升大型语言模型推理能力的技术原理解析
一只贴代码君
语言模型人工智能自然语言处理学习AI编程开发语言
强化学习基础•基本概念:强化学习是一种机器学习方法,智能体(模型)通过与环境进行交互,根据环境反馈的奖励信号来学习最优的行为策略。•关键要素:包括环境(模型所处的推理任务场景)、状态(模型在推理过程中的当前情况,如已有的推理步骤、已知信息等)、动作(模型在当前状态下做出的推理决策,如选择何种推理方法、如何组织语言等)、奖励(根据模型的动作和结果给予的反馈,如推理正确给予正奖励,错误给予负奖励或无奖
- 迁移学习 Transfer Learning
有人给我介绍对象吗
模块迁移学习人工智能机器学习
迁移学习(TransferLearning)是什么?迁移学习是一种机器学习方法,它的核心思想是利用已有模型的知识来帮助新的任务或数据集进行学习,从而减少训练数据的需求、加快训练速度,并提升模型性能。1.为什么需要迁移学习?在深度学习任务(如目标检测、分类)中,通常需要大量数据和计算资源来训练一个高性能模型。然而,在某些场景下,我们面临以下挑战:数据有限:有些领域(如医学影像、多光谱图像)很难收集足
- deepseek:三个月备考高级系统架构师
wujiada001
AI-MODEL系统架构
一、备考总体规划(2025年2月11日-2025年5月)1.第一阶段:基础夯实(2025年2月11日-2025年3月10日)目标:快速掌握系统架构师考试的核心知识点。重点内容:计算机组成原理、操作系统、数据库原理。软件工程、设计模式、系统架构设计原则。网络通信、分布式系统、云计算、大数据等新兴技术。学习方法:阅读《系统架构设计师教程》或精简版教材,快速过一遍知识点。观看视频课程(如慕课网、腾讯课堂
- 聚类算法概念、分类、特点及应用场景【机器学习】【无监督学习】
飞火流星02027
云计算机器学习算法聚类人工智能聚类算法
概念机器学习聚类算法是一种无监督学习方法,旨在将数据集分割成不同的类或簇,使得同一簇内的数据对象相似性尽可能大,而不同簇之间的数据对象差异性也尽可能大。聚类算法广泛应用于新闻自动分组、用户分群、图像分割等领域。主要聚类算法及其特点层次聚类算法层次法(hierarchicalmethods)通过构建数据点之间的层次结构来进行聚类,可以是自底向上的凝聚方法或自顶向下的分裂方法。代表算法包括CU
- 土壤分析:土壤污染监测_(18).土壤污染监测与修复的最新进展
zhubeibei168
农业检测opencv人工智能计算机视觉无人机图像处理农业检测
土壤污染监测与修复的最新进展1.引言随着工业化和城市化的快速发展,土壤污染问题日益严重,对环境和人类健康构成了巨大威胁。传统的土壤污染监测方法依赖于实验室分析,耗时且成本高昂。近年来,计算机视觉技术在土壤污染监测领域的应用取得了显著进展,通过图像处理和机器学习方法,可以快速、准确地识别和监测土壤污染情况。本节将介绍计算机视觉技术在土壤污染监测与修复中的最新进展,包括数据采集、图像处理、特征提取、污
- 大模型学习笔记 - LLM 对齐优化算法 DPO
JL_Jessie
学习笔记算法LLM
LLM-DPOLLM-DPODPO概述DPO目标函数推导DPO目标函数梯度的推导DPO概述大模型预训练是从大量语料中进行无监督学习,语料库内容混杂,训练的目标是语言模型损失,任务是nexttokenprediction,生成的token不可控,为了让大模型能生成符合人类偏好的答案(无毒无害等)一般都会进行微调和人类对齐,通常采用的方法是基于人类反馈的强化学习方法RLHF.RLHF是一个复杂且经常不
- 自监督的主要学习方法
一只波加猹~
自监督学习自监督
自监督学习是一种机器学习方法,其中模型从未标注的数据中学习生成标签,通常通过构造预训练任务或预测任务来从数据的内部结构中提取信息。它的核心目标是利用无监督的数据进行学习,从而在下游任务中更好地利用监督信号。自监督学习的主要方法可以分为以下三类:1.基于上下文(Context-based)方法基于上下文的方法通过预测数据的局部信息或不同部分之间的关系,来进行自监督学习。模型通过挖掘数据本身的结构或模
- Python近红外光谱分析与机器学习、深度学习方法融合实践技术
xiao5kou4chang6kai4
人工智能机器学习深度学习python机器学习深度学习近红外光谱
第一章Python入门基础【理论讲解与案例演示实操练习】1、Python环境搭建(下载、安装与版本选择)。2、如何选择Python编辑器?(IDLE、Notepad++、PyCharm、Jupyter…)3、Python基础(数据类型和变量、字符串和编码、list和tuple、条件判断、循环、函数的定义与调用等)4、常见的错误与程序调试5、第三方模块的安装与使用6、文件读写(I/O)7、实操练习第
- 数据结构、算法与STL
刃神太酷啦
蓝桥杯C++组C++数据结构
数据结构、算法与STL顺序存储比如像手机的通讯录中的排序,就可以在内存中采用顺序存储的方式算法是可以没有输入的,但一定要有输出。没有输出的算法是没有意义的算法的学习方法跟数学相似运行代码的时间用时间复杂度去看时间复杂度只用看被执行次数最多(凭感觉看是哪个)的那个语句使用C++标准注意事项:1.编译器支持几几年的标准,我们就要去写符合标准下的代码2.C++标准可以向前兼容,但是不能向后兼容(eg:支
- Spring Boot和Spring Cloud来实现微服务之间的调用
王大师王文峰
面经吐血整理Java基础到框架springbootspringcloud微服务
本人详解作者:王文峰,参加过CSDN2020年度博客之星,《Java王大师王天师》公众号:JAVA开发王大师,专注于天道酬勤的Java开发问题中国国学、传统文化和代码爱好者的程序人生,期待你的关注和支持!本人外号:神秘小峯山峯转载说明:务必注明来源(注明:作者:王文峰哦)SpringBoot和SpringCloud来实现微服务之间的调用学习教程(传送门)1.创建服务提供者(Provider)1.1
- 一文掌握什么是时间序列?时间序列研究的核心任务?目前最强大的时序分析与建模工具和项目?
幸运 lucky
人工智能学习之路时间序列核心任务时序分析与建模工具和项目SOTA
CSDN叶庭云:https://yetingyun.blog.csdn.net/什么是时间序列?时间序列是一系列按照时间顺序排列的数据点,这些数据点通常是随时间连续变化的测量值。时间序列分析是统计学中专门用于解析时间顺序数据的一套技术,旨在识别数据中的模式、趋势、季节性波动及其他潜在的周期性特征。然而,当前,机器学习与深度学习方法在这一领域的应用正日益受到青睐。时间序列数据可以来源于各种领域,如经
- Python视频制作引擎Manim安装教程2024版(科学概念可视化)_下载mainm引擎
m0_61067876
程序员python开发语言
一、Python所有方向的学习路线Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。二、学习软件工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。三、入门学习视频我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们
- c语言八数码问题启发式搜索_一种快速且简单的AI启发式语言学习方法
weixin_26632369
pythonjava人工智能编程语言机器学习
c语言八数码问题启发式搜索介绍(Introduction)ThespecialthingIfoundwhenIfirststarteddivingintothefieldofArtificialIntelligencewastheinfiniteamountofparallelsbetweenhowneuralnetworkslearnandmysubjectiveexperienceofmyow
- 一切皆是映射:神经网络在图像识别中的应用案例
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
一切皆是映射:神经网络在图像识别中的应用案例关键词:神经网络、图像识别、深度学习、卷积神经网络、映射、模式识别1.背景介绍1.1问题的由来图像识别问题的研究源于人类对于智能机器的渴望。早在20世纪50年代,人工智能的先驱们就开始探索如何让计算机具备类似人类的视觉感知能力。从最初的简单模式匹配,到后来的统计学习方法,再到如今的深度学习,图像识别技术经历了几代演变。这一演变过程反映了人工智能技术的快速
- 随机森林(Random Forest)预测模型及其特征分析(Python和MATLAB实现)
追蜻蜓追累了
深度学习机器学习python随机森林大数据回归算法算法
##一、背景在大数据和机器学习的快速发展时代,数据的处理和分析变得尤为重要。随着多个领域积累了海量数据,传统的统计分析方法常常无法满足复杂问题的需求。在这种背景下,机器学习方法开始广泛应用。随机森林(RandomForest)作为一种强大的集成学习方法,因其高效性和较强的泛化能力而备受关注。随机森林最初由LeoBreiman在2001年提出,基于决策树这一基本分类模型。其基本思想是通过构建多个决策
- 深度学习盛行,还记得哪些传统机器学习方法和模型?
硬件学长森哥
人工智能深度学习机器学习人工智能
开头森哥说:假期前后在准备成像技术的总结,目前已完成两部分,争取在摸索出一些编辑和运营技巧后,完善成一个系列和大家见面;当然也有可能会通过一些更加贴合摄影实用的角度出一些更加浅显的内容。最终如何呈现还需要慢慢摸索。传统机器学习是指在深度学习盛行之前开发的机器学习和人工智能技术。这些传统方法通常依赖于手工设计的特征提取和模型结构。而深度学习是一种机器学习技术,它通过深层神经网络从原始数据中学习特征表
- 决策树ID3算法
小波LFZZB
算法决策树机器学习数据挖掘sklearn
决策树决策树概念决策树,一种基于规则的机器学习方法,主要用于分类和回归,常用作机器学习中的预测模型。树形结构图,树中每个节点表示某个对象,每个分叉路径代表的某个可能的属性值,每个叶结点对应从根节点到该叶节点所经历的路径所表示的对象的值。它通过递归地划分数据空间并在每个分区内拟合一个简单的预测模型来工作。选择分区是为了在每个细分中最大化目标变量的同质性。决策树特点1.树形结构决策树由根节点、内部节点
- 监督学习、无监督学习和强化学习的特点和应用场景
BugNest
AI学习ai机器学习人工智能
在机器学习中,监督学习、无监督学习和强化学习是三种核心的学习范式,它们各自具有独特的特点和应用场景。以下是对这三种学习方法的详细对比和总结:监督学习(SupervisedLearning)特点:数据标注:训练数据包含明确的输入特征和对应的标签(目标输出)。学习方式:模型通过学习输入特征和标签之间的关系来进行训练,这种关系通常表现为一个映射函数。预测能力:一旦训练完成,模型能够对新的、未见过的输入数
- 【15-聚类分析入门:使用Scikit-learn进行K-means聚类】
是阿牛啊
机器学习回归预测大数据挖掘kmeans聚类python机器学习人工智能sklearn性能优化
文章目录前言K-means聚类的原理Scikit-learn中的K-means实现安装与导入生成模拟数据应用K-means聚类可视化聚类结果选择K的值总结前言 聚类分析是一种无监督学习方法,用于将数据集中的样本分组成若干个簇(cluster)。K-means是最广泛使用的聚类算法之一,其核心思想是将数据点分配到K个簇中,使得每个点到其簇中心的距离之和最小。在本文中,我们将介绍如何使用Scikit
- 深入解析:Python中的决策树与随机森林
小鹿( ﹡ˆoˆ﹡ )
Pythonpython决策树随机森林Python
在这个数据驱动的时代,机器学习技术已经成为许多企业和研究机构不可或缺的一部分。其中,决策树和随机森林作为两种强大的算法,在分类和回归任务中表现尤为出色。本文将带领大家深入了解这两种算法在Python中的实现,从基础到实战,逐步揭开它们的神秘面纱。引言决策树是一种非常直观的预测模型,它通过一系列规则对数据进行分割,最终形成树状结构。而随机森林则是基于决策树的一种集成学习方法,通过构建多个决策树并取其
- 《程序人生》工作2年感悟
Zyy~
程序人生职场和发展
一些杂七杂八的感悟:1.把事做好比什么都重要,先树立量良好的形象,再横向发展。2.职场就是人情世故,但也不要被人情世故绑架。3.要常怀感恩的心,要记住帮助过你的人,愿意和你分享的人,有能力的时候不要忘记帮助别人。4.机会很重要,不要轻易放弃一些你觉得不重要的东西,其实那些东西也很重要。5.要学的技术太多了,但是只有打牢根基才能走的更远。6.学习是一个持久性过程,要注重平时的积累,多写写博客,多敲敲
- Day31-【AI思考】-深度学习方法论全解析——科学提升学习效率的终极指南
一个一定要撑住的学习者
#AI深度思考学习方法人工智能
文章目录深度学习方法论全解析——科学提升学习效率的终极指南**一、影子跟读法(Shadowing)——听力突破核武器****二、番茄工作法(Pomodoro)——时间管理手术刀****三、费曼技巧(FeynmanTechnique)——知识内化加速器****四、康奈尔笔记(CornellNotes)——信息处理引擎**效能倍增组合技常见问题解决方案深度学习方法论全解析——科学提升学习效率的终极指南
- java线程Thread和Runnable区别和联系
zx_code
javajvmthread多线程Runnable
我们都晓得java实现线程2种方式,一个是继承Thread,另一个是实现Runnable。
模拟窗口买票,第一例子继承thread,代码如下
package thread;
public class ThreadTest {
public static void main(String[] args) {
Thread1 t1 = new Thread1(
- 【转】JSON与XML的区别比较
丁_新
jsonxml
1.定义介绍
(1).XML定义
扩展标记语言 (Extensible Markup Language, XML) ,用于标记电子文件使其具有结构性的标记语言,可以用来标记数据、定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言。 XML使用DTD(document type definition)文档类型定义来组织数据;格式统一,跨平台和语言,早已成为业界公认的标准。
XML是标
- c++ 实现五种基础的排序算法
CrazyMizzz
C++c算法
#include<iostream>
using namespace std;
//辅助函数,交换两数之值
template<class T>
void mySwap(T &x, T &y){
T temp = x;
x = y;
y = temp;
}
const int size = 10;
//一、用直接插入排
- 我的软件
麦田的设计者
我的软件音乐类娱乐放松
这是我写的一款app软件,耗时三个月,是一个根据央视节目开门大吉改变的,提供音调,猜歌曲名。1、手机拥有者在android手机市场下载本APP,同意权限,安装到手机上。2、游客初次进入时会有引导页面提醒用户注册。(同时软件自动播放背景音乐)。3、用户登录到主页后,会有五个模块。a、点击不胫而走,用户得到开门大吉首页部分新闻,点击进入有新闻详情。b、
- linux awk命令详解
被触发
linux awk
awk是行处理器: 相比较屏幕处理的优点,在处理庞大文件时不会出现内存溢出或是处理缓慢的问题,通常用来格式化文本信息
awk处理过程: 依次对每一行进行处理,然后输出
awk命令形式:
awk [-F|-f|-v] ‘BEGIN{} //{command1; command2} END{}’ file
[-F|-f|-v]大参数,-F指定分隔符,-f调用脚本,-v定义变量 var=val
- 各种语言比较
_wy_
编程语言
Java Ruby PHP 擅长领域
- oracle 中数据类型为clob的编辑
知了ing
oracle clob
public void updateKpiStatus(String kpiStatus,String taskId){
Connection dbc=null;
Statement stmt=null;
PreparedStatement ps=null;
try {
dbc = new DBConn().getNewConnection();
//stmt = db
- 分布式服务框架 Zookeeper -- 管理分布式环境中的数据
矮蛋蛋
zookeeper
原文地址:
http://www.ibm.com/developerworks/cn/opensource/os-cn-zookeeper/
安装和配置详解
本文介绍的 Zookeeper 是以 3.2.2 这个稳定版本为基础,最新的版本可以通过官网 http://hadoop.apache.org/zookeeper/来获取,Zookeeper 的安装非常简单,下面将从单机模式和集群模式两
- tomcat数据源
alafqq
tomcat
数据库
JNDI(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。
没有使用JNDI时我用要这样连接数据库:
03. Class.forName("com.mysql.jdbc.Driver");
04. conn
- 遍历的方法
百合不是茶
遍历
遍历
在java的泛
- linux查看硬件信息的命令
bijian1013
linux
linux查看硬件信息的命令
一.查看CPU:
cat /proc/cpuinfo
二.查看内存:
free
三.查看硬盘:
df
linux下查看硬件信息
1、lspci 列出所有PCI 设备;
lspci - list all PCI devices:列出机器中的PCI设备(声卡、显卡、Modem、网卡、USB、主板集成设备也能
- java常见的ClassNotFoundException
bijian1013
java
1.java.lang.ClassNotFoundException: org.apache.commons.logging.LogFactory 添加包common-logging.jar2.java.lang.ClassNotFoundException: javax.transaction.Synchronization
- 【Gson五】日期对象的序列化和反序列化
bit1129
反序列化
对日期类型的数据进行序列化和反序列化时,需要考虑如下问题:
1. 序列化时,Date对象序列化的字符串日期格式如何
2. 反序列化时,把日期字符串序列化为Date对象,也需要考虑日期格式问题
3. Date A -> str -> Date B,A和B对象是否equals
默认序列化和反序列化
import com
- 【Spark八十六】Spark Streaming之DStream vs. InputDStream
bit1129
Stream
1. DStream的类说明文档:
/**
* A Discretized Stream (DStream), the basic abstraction in Spark Streaming, is a continuous
* sequence of RDDs (of the same type) representing a continuous st
- 通过nginx获取header信息
ronin47
nginx header
1. 提取整个的Cookies内容到一个变量,然后可以在需要时引用,比如记录到日志里面,
if ( $http_cookie ~* "(.*)$") {
set $all_cookie $1;
}
变量$all_cookie就获得了cookie的值,可以用于运算了
- java-65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
bylijinnan
java
参考了网上的http://blog.csdn.net/peasking_dd/article/details/6342984
写了个java版的:
public class Print_1_To_NDigit {
/**
* Q65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
* 1.使用字符串
- Netty源码学习-ReplayingDecoder
bylijinnan
javanetty
ReplayingDecoder是FrameDecoder的子类,不熟悉FrameDecoder的,可以先看看
http://bylijinnan.iteye.com/blog/1982618
API说,ReplayingDecoder简化了操作,比如:
FrameDecoder在decode时,需要判断数据是否接收完全:
public class IntegerH
- js特殊字符过滤
cngolon
js特殊字符js特殊字符过滤
1.js中用正则表达式 过滤特殊字符, 校验所有输入域是否含有特殊符号function stripscript(s) { var pattern = new RegExp("[`~!@#$^&*()=|{}':;',\\[\\].<>/?~!@#¥……&*()——|{}【】‘;:”“'。,、?]"
- hibernate使用sql查询
ctrain
Hibernate
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import org.hibernate.Hibernate;
import org.hibernate.SQLQuery;
import org.hibernate.Session;
import org.hibernate.Transa
- linux shell脚本中切换用户执行命令方法
daizj
linuxshell命令切换用户
经常在写shell脚本时,会碰到要以另外一个用户来执行相关命令,其方法简单记下:
1、执行单个命令:su - user -c "command"
如:下面命令是以test用户在/data目录下创建test123目录
[root@slave19 /data]# su - test -c "mkdir /data/test123" 
- 好的代码里只要一个 return 语句
dcj3sjt126com
return
别再这样写了:public boolean foo() { if (true) { return true; } else { return false;
- Android动画效果学习
dcj3sjt126com
android
1、透明动画效果
方法一:代码实现
public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle savedInstanceState)
{
View rootView = inflater.inflate(R.layout.fragment_main, container, fals
- linux复习笔记之bash shell (4)管道命令
eksliang
linux管道命令汇总linux管道命令linux常用管道命令
转载请出自出处:
http://eksliang.iteye.com/blog/2105461
bash命令执行的完毕以后,通常这个命令都会有返回结果,怎么对这个返回的结果做一些操作呢?那就得用管道命令‘|’。
上面那段话,简单说了下管道命令的作用,那什么事管道命令呢?
答:非常的经典的一句话,记住了,何为管
- Android系统中自定义按键的短按、双击、长按事件
gqdy365
android
在项目中碰到这样的问题:
由于系统中的按键在底层做了重新定义或者新增了按键,此时需要在APP层对按键事件(keyevent)做分解处理,模拟Android系统做法,把keyevent分解成:
1、单击事件:就是普通key的单击;
2、双击事件:500ms内同一按键单击两次;
3、长按事件:同一按键长按超过1000ms(系统中长按事件为500ms);
4、组合按键:两个以上按键同时按住;
- asp.net获取站点根目录下子目录的名称
hvt
.netC#asp.nethovertreeWeb Forms
使用Visual Studio建立一个.aspx文件(Web Forms),例如hovertree.aspx,在页面上加入一个ListBox代码如下:
<asp:ListBox runat="server" ID="lbKeleyiFolder" />
那么在页面上显示根目录子文件夹的代码如下:
string[] m_sub
- Eclipse程序员要掌握的常用快捷键
justjavac
javaeclipse快捷键ide
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 写道 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可
- c++编程随记
lx.asymmetric
C++笔记
为了字体更好看,改变了格式……
&&运算符:
#include<iostream>
using namespace std;
int main(){
int a=-1,b=4,k;
k=(++a<0)&&!(b--
- linux标准IO缓冲机制研究
音频数据
linux
一、什么是缓存I/O(Buffered I/O)缓存I/O又被称作标准I/O,大多数文件系统默认I/O操作都是缓存I/O。在Linux的缓存I/O机制中,操作系统会将I/O的数据缓存在文件系统的页缓存(page cache)中,也就是说,数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。1.缓存I/O有以下优点:A.缓存I/O使用了操作系统内核缓冲区,
- 随想 生活
暗黑小菠萝
生活
其实账户之前就申请了,但是决定要自己更新一些东西看也是最近。从毕业到现在已经一年了。没有进步是假的,但是有多大的进步可能只有我自己知道。
毕业的时候班里12个女生,真正最后做到软件开发的只要两个包括我,PS:我不是说测试不好。当时因为考研完全放弃找工作,考研失败,我想这只是我的借口。那个时候才想到为什么大学的时候不能好好的学习技术,增强自己的实战能力,以至于后来找工作比较费劲。我
- 我认为POJO是一个错误的概念
windshome
javaPOJO编程J2EE设计
这篇内容其实没有经过太多的深思熟虑,只是个人一时的感觉。从个人风格上来讲,我倾向简单质朴的设计开发理念;从方法论上,我更加倾向自顶向下的设计;从做事情的目标上来看,我追求质量优先,更愿意使用较为保守和稳妥的理念和方法。
&