- Java多线程编程中容易混淆的Thread.sleep()与Object.wait()深度解析
前言在Java多线程编程的学习和实践过程中,我发现很多初学者(包括曾经的我)经常混淆Thread.sleep()和Object.wait()这两个方法的使用场景。本文将通过代码示例、时序图和内存变化图,深入分析这两个方法的区别,并分享我在实际项目中使用它们解决线程同步问题的经验。一、基本概念对比1.Thread.sleep()//使当前线程暂停执行指定的毫秒数Thread.sleep(1000);
- 学习以任务为中心的潜动作,随地采取行动
三谷秋水
计算机视觉智能体大模型计算机视觉语言模型机器人人工智能深度学习
25年5月来自香港大学、OpenDriveLab和智元机器人的论文“LearningtoActAnywherewithTask-centricLatentActions”。通用机器人应该在各种环境中高效运行。然而,大多数现有方法严重依赖于扩展动作标注数据来增强其能力。因此,它们通常局限于单一的物理规范,难以学习跨不同具身和环境的可迁移知识。为了突破这些限制,UniVLA,是一个用于学习跨具身视觉-
- 剑指offer第二版学习笔记(一)前言
虚空来袭
剑指offer第二版剑指Offer第2版
久闻剑指offer大名,如今我也到了要找工作的时候了,趁现在还有时间,多学一点是一点,在此开一个分集记录一下在学习剑指offer过程中的一些经验和想法。注:使用的书籍是剑指offer第二版。本期内容书籍内容书籍内容简介结语本期仅写了书籍内容介绍,作者还总结了书籍特色、对创作过程中家人、朋友等进行了感谢,我略去了这些部分。下期应该是接着看第一部分。
- 【Transformer论文】通过蒙面多模态聚类预测学习视听语音表示
Wwwilling
推荐系统论文阅读Transformer系列论文transformer聚类多模态
文献题目:LEARNINGAUDIO-VISUALSPEECHREPRESENTATIONBYMASKEDMULTIMODALCLUSTERPREDICTION发表时间:2022发表期刊:ICLR摘要语音的视频记录包含相关的音频和视觉信息,为从说话者的嘴唇运动和产生的声音中学习语音表示提供了强大的信号。我们介绍了视听隐藏单元BERT(AV-HuBERT),这是一种用于视听语音的自我监督表示学习框架
- 对比2个数据库:google Cloud Firestore 和 supabase
waterHBO
数据库云端数据库
帮我对比一下:CloudFirestore和supabase尤其是,是否免费,注册难度,是否需要银行卡注册,我没有国外的银行卡(我在中国大陆)。以及免费额度是多少,上手难度,即,学习曲线因为我平时一般是写小项目,我的数据库一般使用json或是sqlite3第1个回答好问题!下面是CloudFirestore(Firebase)和Supabase的全面对比,特别关注了中国大陆用户关心的注册、费用、学
- 【Spring AI】 1接入 Ollama实践
占星安啦
springaijavaspringaiollama
SpringAI接入Ollama实践学习笔记Ollama官方文档SpringAI快速开始SpringAIOllama集成文档1.pom.xml依赖配置前置条件:请确保你已安装好Java17+、Maven、Ollama,并已下载好所需大模型。在pom.xml中添加SpringAI及Ollama相关依赖:org.springframework.bootspring-boot-starter-webor
- AWS Cognito项目实战指南:集成用户管理与自定义电子邮件功能
一一MIO一一
本文还有配套的精品资源,点击获取简介:本项目涉及利用AWSCognito服务,创建一个基于云端的用户身份验证和管理应用。通过集成Cognito用户池,项目支持社交登录和自定义用户身份保护,同时涉及通过AWSLambda发送自定义电子邮件通知,增强用户体验。项目采用TypeScript编程语言,提升代码的可维护性和可读性,为开发者提供一个学习AWS无服务器认证解决方案的实践案例。1.AWSCogni
- 基于STM32L4XX、HAL库的VGDD79S915N0SA LoRa模块驱动程序设计
July工作室
stm32嵌入式硬件单片机
一、简介:VGDD79S915N0SA是一款高性能的LoRa无线通信模块,工作在915MHz频段,具有以下特点:基于SemtechSX1276/78芯片工作频率:902-928MHz(ISM频段)输出功率:最大20dBm接收灵敏度:低至-148dBm通信距离:市区2-5km,郊区可达15km支持LoRa™调制和FSK调制低功耗设计,适合电池供电应用SPI接口,方便与MCU连接二、硬件接口:模块引脚
- 机器学习在智能仓储中的应用:库存管理与物流优化
Blossom.118
机器学习与人工智能机器学习人工智能深度学习机器人sklearntensorflowcnn
最近研学过程中发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击链接跳转到网站人工智能及编程语言学习教程。读者们可以通过里面的文章详细了解一下人工智能及其编程等教程和学习方法。下面开始对正文内容的介绍。随着电子商务的蓬勃发展,仓储和物流行业面临着前所未有的挑战和机遇。智能仓储通过整合先进的信息技术,如物联网(IoT)、大数据和机器学习,能够实现从货物入库到出库的全流程
- 使用matplotlib绘制散点图、柱状图和饼状图-学习篇
Zorione
Pythonmatplotlib学习python
一、散点图Python代码如下:num_points=100x=np.random.rand(num_points)#x点位随机y=np.random.rand(num_points)#y点位随机colors=np.random.rand(num_points)#颜色随机sizes=1000*np.random.rand(num_points)#大小随机alphas=np.random.rand(
- 【自然语言处理-NLP】文本预处理技术
云博士的AI课堂
哈佛博后带你玩转机器学习深度学习自然语言处理人工智能NLP深度学习数据预处理NLP数据预处理机器学习
以下内容将从基本概念到实用代码分步骤、分场景地详细介绍NLP常见文本预处理方法及其背后的思想。如果无法从外部导入数据,我们会模拟一份简易文本数据(如字符串列表),并在此基础上演示预处理代码及详细解释,确保在常规Python环境下可以运行。一、文本预处理的常见需求和作用在自然语言处理(NLP)任务(如机器学习、深度学习、大模型开发)中,原始文本数据通常会包含各种噪声,例如:多余的空格、换行符、特殊符
- java数组解析_实例讲解Java数组解构
关然
java数组解析
数组是在程序设计中,为了处理方便,把具有相同类型的若干元素按有序的形式组织起来的一种形式。我们可以把数组看成是用于储存多个相同类型数据的集合,我们在需要用到数组中的一部分数据时,就需要用到数组解构,获得相应的数据。本文我们就一起来学习Java数组解构的相关知识。1.简单解构constnumbers=['a','b','c'];//获取前两项const[n1,n2]=numbers;console.
- 深度学习之基于Pytorch卷积神经网络人民币面值识别
Q1744828575
pythonpytorchplotly
欢迎大家点赞、收藏、关注、评论啦,由于篇幅有限,只展示了部分核心代码。文章目录一项目简介二、功能三、系统四.总结一项目简介 一、项目背景在日常生活和商业活动中,人民币面值识别技术具有重要的应用价值。传统的面值识别方法,如基于模板匹配或特征工程的方法,在面对复杂多变的图像环境时,往往难以达到理想的识别效果。随着深度学习技术的兴起,特别是卷积神经网络(ConvolutionalNeuralNetwo
- 行为正则化与顺序策略优化结合的离线多智能体学习算法
离线多智能体强化学习(MARL)是一个新兴领域,目标是在从预先收集的数据集中学习最佳的多智能体策略。随着人工智能技术的发展,多智能体系统在诸如自动驾驶、智能家居、机器人协作以及智能调度决策等方面展现了巨大的应用潜力。但现有的离线MARL方法也面临很多挑战,仍存在不协调行为和分布外联合动作的问题。为了应对这些挑战,中山大学计算机学院、美团履约平台技术部开展了学术合作项目,并取得了一些的成果,希望分享
- 《三生原理》如何改进阴阳参数冷启动?
葫三生
三生学派人工智能平面线性代数概率论算法
AI辅助创作:《三生原理》通过动态参数耦合与跨域迁移学习优化阴阳参数冷启动问题,显著降低15%的初始化成本并提升收敛效率,具体技术路径如下:一、动态参数化生成引擎阴阳本体的递归约束基于素数基底(阴元=2,阳元=3)构建参数化公式:p=3(2n+1)+2(2n+m+1)(m∈{0,1,2,3,4})通过约束参数mm的取值空间(对应五行属性),压缩冷启动搜索范围在华为高斯实验室的量子加密
- 利用视觉-语言模型搭建机器人灵巧操作的支架
三谷秋水
智能体大模型计算机视觉语言模型机器人人工智能计算机视觉机器学习
25年6月来自斯坦福和德国卡尔斯鲁厄理工的论文“ScaffoldingDexterousManipulationwithVision-LanguageModels”。灵巧机械手对于执行复杂的操作任务至关重要,但由于演示收集和高维控制的挑战,其训练仍然困难重重。虽然强化学习(RL)可以通过在模拟中积累经验来缓解数据瓶颈,但它通常依赖于精心设计的、针对特定任务的奖励函数,这阻碍了其可扩展性和泛化能力。
- 手机射频功放测试学习(二)——手机线性功放的静态电流和小信号(S-Parameter)测试
零壹电子
手机射频功放测试合集学习S参数读取
目录一、概要二、LPA的电流测试1、LPA的泄漏电流测试手动测试步骤如下:自动化测试:2、LPA的静态电流测试手动测试步骤如下:自动化测试:三、LPA的S-Parameter测试1、矢量网络分析仪校准2、LPA的S参数手动测试步骤:3、LPA的S参数自动测试步骤:四、结语一、概要诚如上文介绍,实验室中进行手机线性功放测试,第一步是看静态电流,第二步再测试小信号(S-Parameter)特性;步骤是
- Linux——搭建嵌入式Linux开发环境步骤总结(虚拟机、Ubuntu、JDK、库文件、GCC)
Winter_world
搭建嵌入式Linux开发环境虚拟机Ubuntu安装JDK安装库文件GCC版本更新
目录0前言1主机软件环境2Linux系统下安装编译组件3Linux系统下安装库文件和JDK0前言回顾一直以来做的嵌入式项目方向,从如ST的单片机裸机开发,SOC开发,到STM32裸机开发,基于uCOSII的开发,基于freeRTOS的开发等,在实时操作系统层面的应用开发停留了一段时间了,一直想再突破下自我,去年做了一个基于工控机方案的Linux系统应用开发项目,对于Linux一直没有系统性的学习整
- 【机器学习第四期(Python)】LightGBM 方法原理详解
WW、forever
机器学习原理及代码实现机器学习python人工智能
LightGBM概述一、LightGBM简介二、LightGBM原理详解⚙️核心原理LightGBM的主要特点三、LightGBM实现步骤(Python)可调参数推荐完整案例代码(回归任务+可视化)参考LightGBM是由微软开源的基于梯度提升框架(GBDT)的机器学习算法,专为高性能、高效率设计,适用于大规模数据处理任务。它在准确率、训练速度和资源使用上都优于传统GBDT实现(如XGBoost)
- 华为HDC 2025:一场开发者的技术盛宴与灵感之旅
前言作为一名开发者,参加华为HDC大会就像是一场朝圣之旅。每年这个时候,全球的开发者们都会汇聚一堂,分享最新的技术成果,探讨未来的趋势,而今年的HDC2025更是让我期待已久。这次大会不仅有华为最新技术的展示,还有各种实战案例和深度分享,对我来说,这是一次难得的学习和交流机会,更是面基各位好友的最佳机会。那么接下来就来分享一下三掌柜参加2025华为HDC大会的所见所感吧。初到会场:满满的科技感当我
- 【机器学习】机器学习的基本分类-监督学习-线性回归(Linear Regression)
IT古董
人工智能机器学习机器学习分类学习人工智能线性回归
线性回归是监督学习中的一种基础算法,用于解决回归问题。它通过拟合一条直线(或平面、高维超平面),来预测输出与输入变量之间的关系。1.线性回归的基本概念目标给定输入和对应的输出y,找到一个线性函数:其中:是权重(回归系数)。b是偏置(截距)。y是预测值。损失函数为了找到最佳的w和b,需要最小化预测值和真实值
- pytest学习和使用-pytest如何进行分布式测试?(pytest-xdist)
测试界晓晓
软件测试pytest学习分布式软件测试功能测试自动化测试程序人生
1什么是分布式测试?在进行本文之前,先了解些基础知识,什么是分布式测试?分布式测试:是指通过局域网和Internet,把分布于不同地点、独立完成特定功能的测试计算机连接起来,以达到测试资源共享、分散操作、集中管理、协同工作、负载均衡、测试过程监控等目的的计算机网络测试。通俗的讲:分布式测试就是活太多,一个人干费时间,那就让多个人一起干,节省了资源和时间。2为什么要进行分布式测试?2.1场景1:自动
- day45-Django RestFramework(drf)实战案例
生而自由爱而无畏
Pythondjangopython后端开发语言
1.6DjangoRestFramework(drf)实战案例1.需求请结合上述学习的drf知识开发简易版《抽屉新热榜》。其中包含的功能如下:注册输入:手机号、用户名、密码、确认密码。登录输入:手机号或用户名+密码注意:登录成功后给用户返回token,后续请求需要在url中携带token(有效期2周)我的话题-我的话题列表-创建话题-修改话题-删除话题(逻辑删除)我的资讯-创建资讯(5分钟创建一个
- 为什么要学习 next.js 框架 + Vercel 部署平台,因为我想把自己的 app 分享给别人。
waterHBO
学习javascript开发语言
前端开发太卷?不如给你的React换个“豪华座驾”和“F1赛道”**如果你像我一样,从create-react-app的时代一路走来,你一定经历过那种“甜蜜的烦恼”:React给了你一个超强的V8引擎,但造车剩下的所有事——从方向盘(路由)、底盘(项目结构)到导航系统(数据管理)——都得你自己撸。结果就是,每个项目开始前,你都在重复发明轮子,在Webpack的配置地狱里苦苦挣扎。好消息是,时代变了
- 提升AI产品竞争力:可用性评估的10个核心维度
AGI大模型与大数据研究院
人工智能ai
提升AI产品竞争力:可用性评估的10个核心维度关键词:AI产品、可用性评估、用户体验、人机交互、产品竞争力、评估维度、人工智能摘要:本文深入探讨了提升AI产品竞争力的10个核心可用性评估维度。我们将从用户角度出发,系统性地分析如何评估和优化AI产品的可用性,包括易用性、效率、可学习性、容错性等关键指标。通过详细的案例分析和实用建议,帮助产品团队打造更具竞争力的AI解决方案。背景介绍目的和范围本文旨
- Python 数据分析与机器学习入门 (一):环境搭建与核心库概览
程序员阿超的博客
Pythonpython数据分析机器学习入门教程环境搭建AnacondaJupyterNotebook
Python数据分析与机器学习入门(一):环境搭建与核心库概览本文摘要本文是Python数据分析与机器学习入门系列的第一篇,专为初学者设计。文章首先阐明了Python在数据科学领域的优势,然后手把手指导读者如何使用Anaconda搭建一个无痛、专业的开发环境,并介绍了强大的交互式工具JupyterNotebook的基本操作。最后,简要概览了NumPy、Pandas、Scikit-learn等核心库
- Python 数据分析与机器学习入门 (三):Pandas 数据导入与核心操作
程序员阿超的博客
Pythonpython数据分析机器学习PandasDataFrameSeries数据清洗
引言:Pandas是什么,为何如此重要?如果说NumPy是处理原始数值数组的利器,那么Pandas则是驾驭结构化数据的瑞士军刀。在真实世界的数据分析项目中,数据很少是单纯的数字矩阵。它们通常以表格形式存在,包含行和列,每列可能有不同的数据类型(如文本、数字、日期),并且带有描述性的列名和行索引。Pandas正是为高效处理这类数据而生。Pandas构建于NumPy之上,它不仅继承了NumPy的高性能
- 面经总结系列(十六): 元象科技大模型推理优化工程师
GoAI
AI面经总结机器学习算法人工智能大模型机器学习深度学习
作者简介:CSDN、阿里云人工智能领域博客专家,新星计划计算机视觉导师,百度飞桨PPDE,专注大数据与AI知识分享。✨公众号:GoAI的学习小屋,免费分享书籍、简历、导图等,更有交流群分享宝藏资料,关注公众号回复“加群”或➡️点击链接加群。AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的
- 《深入浅出多模态》(四):多模态经典模型CLIP
GoAI
深入浅出多模态多模态大模型LLM人工智能
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接✨专栏介
- 二次开发源码 借贷系统uniapp/借贷认证系统/小额信贷系统/工薪贷APP/资金贷系统h5
csdndddsd
uniapp借贷系统开发小额贷系统app工薪贷系统安装搭建信用贷认证系统h5资金贷系统安装搭建教程借贷系统安装搭建借贷系统二次开发
前端:UNIAPP后端:ThinkPHP数据库:Mysql前端使用的uniapp可以打包APPH5小程序系统提供了完善的网络借贷体系,为金融中介平台提供从获客到贷后管理全流程服务,解决了借贷手续繁琐、流程缓慢等问题此源码为运营中版本,具有极高稳定性,防注入,防攻击,修复全部已知后门漏洞仅供学习演示、二次开发专用,禁止一切违法行为的利用!可提现金额(元)¥{{qbMoney}}充值提现余额明细余额变
- 关于旗正规则引擎规则中的上传和下载问题
何必如此
文件下载压缩jsp文件上传
文件的上传下载都是数据流的输入输出,大致流程都是一样的。
一、文件打包下载
1.文件写入压缩包
string mainPath="D:\upload\"; 下载路径
string tmpfileName=jar.zip; &n
- 【Spark九十九】Spark Streaming的batch interval时间内的数据流转源码分析
bit1129
Stream
以如下代码为例(SocketInputDStream):
Spark Streaming从Socket读取数据的代码是在SocketReceiver的receive方法中,撇开异常情况不谈(Receiver有重连机制,restart方法,默认情况下在Receiver挂了之后,间隔两秒钟重新建立Socket连接),读取到的数据通过调用store(textRead)方法进行存储。数据
- spark master web ui 端口8080被占用解决方法
daizj
8080端口占用sparkmaster web ui
spark master web ui 默认端口为8080,当系统有其它程序也在使用该接口时,启动master时也不会报错,spark自己会改用其它端口,自动端口号加1,但为了可以控制到指定的端口,我们可以自行设置,修改方法:
1、cd SPARK_HOME/sbin
2、vi start-master.sh
3、定位到下面部分
- oracle_执行计划_谓词信息和数据获取
周凡杨
oracle执行计划
oracle_执行计划_谓词信息和数据获取(上)
一:简要说明
在查看执行计划的信息中,经常会看到两个谓词filter和access,它们的区别是什么,理解了这两个词对我们解读Oracle的执行计划信息会有所帮助。
简单说,执行计划如果显示是access,就表示这个谓词条件的值将会影响数据的访问路径(表还是索引),而filter表示谓词条件的值并不会影响数据访问路径,只起到
- spring中datasource配置
g21121
dataSource
datasource配置有很多种,我介绍的一种是采用c3p0的,它的百科地址是:
http://baike.baidu.com/view/920062.htm
<!-- spring加载资源文件 -->
<bean name="propertiesConfig"
class="org.springframework.b
- web报表工具FineReport使用中遇到的常见报错及解决办法(三)
老A不折腾
finereportFAQ报表软件
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、repeated column width is largerthan paper width:
这个看这段话应该是很好理解的。比如做的模板页面宽度只能放
- mysql 用户管理
墙头上一根草
linuxmysqluser
1.新建用户 //登录MYSQL@>mysql -u root -p@>密码//创建用户mysql> insert into mysql.user(Host,User,Password) values(‘localhost’,'jeecn’,password(‘jeecn’));//刷新系统权限表mysql>flush privileges;这样就创建了一个名为:
- 关于使用Spring导致c3p0数据库死锁问题
aijuans
springSpring 入门Spring 实例Spring3Spring 教程
这个问题我实在是为整个 springsource 的员工蒙羞
如果大家使用 spring 控制事务,使用 Open Session In View 模式,
com.mchange.v2.resourcepool.TimeoutException: A client timed out while waiting to acquire a resource from com.mchange.
- 百度词库联想
annan211
百度
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>RunJS</title&g
- int数据与byte之间的相互转换实现代码
百合不是茶
位移int转bytebyte转int基本数据类型的实现
在BMP文件和文件压缩时需要用到的int与byte转换,现将理解的贴出来;
主要是要理解;位移等概念 http://baihe747.iteye.com/blog/2078029
int转byte;
byte转int;
/**
* 字节转成int,int转成字节
* @author Administrator
*
- 简单模拟实现数据库连接池
bijian1013
javathreadjava多线程简单模拟实现数据库连接池
简单模拟实现数据库连接池
实例1:
package com.bijian.thread;
public class DB {
//private static final int MAX_COUNT = 10;
private static final DB instance = new DB();
private int count = 0;
private i
- 一种基于Weblogic容器的鉴权设计
bijian1013
javaweblogic
服务器对请求的鉴权可以在请求头中加Authorization之类的key,将用户名、密码保存到此key对应的value中,当然对于用户名、密码这种高机密的信息,应该对其进行加砂加密等,最简单的方法如下:
String vuser_id = "weblogic";
String vuse
- 【RPC框架Hessian二】Hessian 对象序列化和反序列化
bit1129
hessian
任何一个对象从一个JVM传输到另一个JVM,都要经过序列化为二进制数据(或者字符串等其他格式,比如JSON),然后在反序列化为Java对象,这最后都是通过二进制的数据在不同的JVM之间传输(一般是通过Socket和二进制的数据传输),本文定义一个比较符合工作中。
1. 定义三个POJO
Person类
package com.tom.hes
- 【Hadoop十四】Hadoop提供的脚本的功能
bit1129
hadoop
1. hadoop-daemon.sh
1.1 启动HDFS
./hadoop-daemon.sh start namenode
./hadoop-daemon.sh start datanode
通过这种逐步启动的方式,比start-all.sh方式少了一个SecondaryNameNode进程,这不影响Hadoop的使用,其实在 Hadoop2.0中,SecondaryNa
- 中国互联网走在“灰度”上
ronin47
管理 灰度
中国互联网走在“灰度”上(转)
文/孕峰
第一次听说灰度这个词,是任正非说新型管理者所需要的素质。第二次听说是来自马化腾。似乎其他人包括马云也用不同的语言说过类似的意思。
灰度这个词所包含的意义和视野是广远的。要理解这个词,可能同样要用“灰度”的心态。灰度的反面,是规规矩矩,清清楚楚,泾渭分明,严谨条理,是决不妥协,不转弯,认死理。黑白分明不是灰度,像彩虹那样
- java-51-输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
bylijinnan
java
public class PrintMatrixClockwisely {
/**
* Q51.输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
例如:如果输入如下矩阵:
1 2 3 4
5 6 7 8
9
- mongoDB 用户管理
开窍的石头
mongoDB用户管理
1:添加用户
第一次设置用户需要进入admin数据库下设置超级用户(use admin)
db.addUsr({user:'useName',pwd:'111111',roles:[readWrite,dbAdmin]});
第一个参数用户的名字
第二个参数
- [游戏与生活]玩暗黑破坏神3的一些问题
comsci
生活
暗黑破坏神3是有史以来最让人激动的游戏。。。。但是有几个问题需要我们注意
玩这个游戏的时间,每天不要超过一个小时,且每次玩游戏最好在白天
结束游戏之后,最好在太阳下面来晒一下身上的暗黑气息,让自己恢复人的生气
&nb
- java 二维数组如何存入数据库
cuiyadll
java
using System;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Xml;
using System.Xml.Serialization;
using System.IO;
namespace WindowsFormsApplication1
{
- 本地事务和全局事务Local Transaction and Global Transaction(JTA)
darrenzhu
javaspringlocalglobaltransaction
Configuring Spring and JTA without full Java EE
http://spring.io/blog/2011/08/15/configuring-spring-and-jta-without-full-java-ee/
Spring doc -Transaction Management
http://docs.spring.io/spri
- Linux命令之alias - 设置命令的别名,让 Linux 命令更简练
dcj3sjt126com
linuxalias
用途说明
设置命令的别名。在linux系统中如果命令太长又不符合用户的习惯,那么我们可以为它指定一个别名。虽然可以为命令建立“链接”解决长文件名的问 题,但对于带命令行参数的命令,链接就无能为力了。而指定别名则可以解决此类所有问题【1】。常用别名来简化ssh登录【见示例三】,使长命令变短,使常 用的长命令行变短,强制执行命令时询问等。
常用参数
格式:alias
格式:ali
- yii2 restful web服务[格式响应]
dcj3sjt126com
PHPyii2
响应格式
当处理一个 RESTful API 请求时, 一个应用程序通常需要如下步骤 来处理响应格式:
确定可能影响响应格式的各种因素, 例如媒介类型, 语言, 版本, 等等。 这个过程也被称为 content negotiation。
资源对象转换为数组, 如在 Resources 部分中所描述的。 通过 [[yii\rest\Serializer]]
- MongoDB索引调优(2)——[十]
eksliang
mongodbMongoDB索引优化
转载请出自出处:http://eksliang.iteye.com/blog/2178555 一、概述
上一篇文档中也说明了,MongoDB的索引几乎与关系型数据库的索引一模一样,优化关系型数据库的技巧通用适合MongoDB,所有这里只讲MongoDB需要注意的地方 二、索引内嵌文档
可以在嵌套文档的键上建立索引,方式与正常
- 当滑动到顶部和底部时,实现Item的分离效果的ListView
gundumw100
android
拉动ListView,Item之间的间距会变大,释放后恢复原样;
package cn.tangdada.tangbang.widget;
import android.annotation.TargetApi;
import android.content.Context;
import android.content.res.TypedArray;
import andr
- 程序员用HTML5制作的爱心树表白动画
ini
JavaScriptjqueryWebhtml5css
体验效果:http://keleyi.com/keleyi/phtml/html5/31.htmHTML代码如下:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"><head><meta charset="UTF-8" >
<ti
- 预装windows 8 系统GPT模式的ThinkPad T440改装64位 windows 7旗舰版
kakajw
ThinkPad预装改装windows 7windows 8
该教程具有普遍参考性,特别适用于联想的机器,其他品牌机器的处理过程也大同小异。
该教程是个人多次尝试和总结的结果,实用性强,推荐给需要的人!
缘由
小弟最近入手笔记本ThinkPad T440,但是特别不能习惯笔记本出厂预装的Windows 8系统,而且厂商自作聪明地预装了一堆没用的应用软件,消耗不少的系统资源(本本的内存为4G,系统启动完成时,物理内存占用比
- Nginx学习笔记
mcj8089
nginx
一、安装nginx 1、在nginx官方网站下载一个包,下载地址是:
http://nginx.org/download/nginx-1.4.2.tar.gz
2、WinSCP(ftp上传工
- mongodb 聚合查询每天论坛链接点击次数
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 18 */
{
"_id" : ObjectId("5596414cbe4d73a327e50274"),
"msgType" : "text",
"sendTime" : ISODate("2015-07-03T08:01:16.000Z"
- java术语(PO/POJO/VO/BO/DAO/DTO)
Luob.
DAOPOJODTOpoVO BO
PO(persistant object) 持久对象
在o/r 映射的时候出现的概念,如果没有o/r映射,就没有这个概念存在了.通常对应数据模型(数据库),本身还有部分业务逻辑的处理.可以看成是与数据库中的表相映射的java对象.最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合.PO中应该不包含任何对数据库的操作.
VO(value object) 值对象
通
- 算法复杂度
Wuaner
Algorithm
Time Complexity & Big-O:
http://stackoverflow.com/questions/487258/plain-english-explanation-of-big-o
http://bigocheatsheet.com/
http://www.sitepoint.com/time-complexity-algorithms/