- Deep Global Registration 代码环境配置(rtx3090+python3.8+cuda11.1+pytorch1.7+MinkowskiEngine0.5.1)
JPy646
pytorch深度学习神经网络
前言踩过的坑:因为rtx3090最低算力是8.6,似乎不支持过低版本的cuda。试过pytorch1.7.0+cuda11.0,但会报错,由于cuda11.0支持的最高算力达不到rtx最低的要求。但配置pytorch1.8时DGR的代码运行时会报错。对于没有这个烦恼的还是推荐安装python3.6+cuda10.2+pytorch1.6+MinkowskiEngine0.4.3,这个配置无需改动代
- 从 Alpha 到 Final:Python 各阶段版本到底该怎么用?
三金C_C
Pythonpython版本生命周期
主流的Python是由PythonSoftwareFoundation(PSF,Python软件基金会)主导的:PSF是一个非营利组织负责维护Python官方语言规范、标准库、社区基础设施它主导的实现版本是我们日常使用的:CPythonPython的版本阶段(版本周期)。这些阶段是官方正式定义的,适用于每一个Python主版本(比如3.12、3.13、3.14…)Python版本的四大阶段Pyth
- AI 大模型重塑软件开发流程的四点观察:跃迁/重构/变革/挑战
敖行客 Allthinker
Thinker说人工智能大模型
作为软件开发的从业者,笔者深刻感受到AI大模型对开发流程的颠覆性影响。从最初的代码补全工具到如今能够自主完成复杂任务的智能协作者,AI的角色转变正推动软件开发范式发生系统性变革。基于实际开发经验与行业案例,从四个维度,浅显讲述一下AI大模型重塑软件开发流程的观察。观察一:编码能力突破——从“助手”到“协作者”的技术跃迁核心变化:AI从“补全代码片段”进化为“自主构建完整系统”过去,AI在开发中的角
- RTX50系显卡+CUDA+torch+python对应关系
前言本人的显卡是RTX5070,使用时发现它对CUDA、torch和python版本有要求,试图按照老项目的依赖文件进行安装发现安不了,因此记录一下(截至2025年6月)。提示:以下是本篇文章正文内容,下面案例可供参考一、RTX50系显卡只能使用CUDA12.8二、目前只支持torch2.7.0和2.7.11.去pytorch官网的https://download.pytorch.org/whl/
- go channel用法
三金C_C
gogolangchannel
介绍channel在Go中是一种专门用来在goroutine之间传递数据的类型安全的管道。你可以把它理解成:多个goroutine之间的**“传话筒”**,谁往通道里塞东西,另一个goroutine就能接收到。Go语言采用CSP(CommunicatingSequentialProcesses)模型,也就是鼓励:“不要通过共享内存来通信,而要通过通信来共享内存”也就是通过channel来传递数据,
- 揭开 MCP 的神秘面纱:标准化 AI 上下文管理的未来(上)
愤怒的可乐
大模型自然语言处理人工智能python开发语言
引言最近MCP大火,本文尝试揭开它神秘的面纱。文章较长,分为上下两篇。架构MCP协议遵循客户端-主机-服务器架构,其中一个主机应用运行多个客户端实例,每个客户端实例维护了和服务器建立的独立的连接。Host:希望通过MCP访问数据的程序,比如一个聊天应用程序。Client:与服务器保持1:1连接(会话)的客户端,Host通过这个Client连接不同的Server提供的功能。Server:通过MCP公
- 强化学习贝尔曼方程推导
愤怒的可乐
强化学习人工智能概率论机器学习算法
引言强化学习中贝尔曼方程的重要性就不说了,本文利用高中生都能看懂的数学知识推导贝尔曼方程。回报折扣回报GtG_tGt的定义为:Gt=Rt+1+γRt+2+γ2Rt+3+⋯=∑k=0∞γkRt+k+1(1)G_t=R_{t+1}+\gammaR_{t+2}+\gamma^2R_{t+3}+\cdots=\sum_{k=0}^\infty\gamma^kR_{t+k+1}\tag1Gt=Rt+1+γR
- Llama改进之——RoPE旋转位置编码
愤怒的可乐
NLP项目实战#LLaMARoPE旋转位置编码
引言旋转位置编码(RotaryPositionEmbedding,RoPE)将绝对相对位置依赖纳入自注意力机制中,以增强Transformer架构的性能。目前很火的大模型LLaMA、QWen等都应用了旋转位置编码。之前在[论文笔记]ROFORMER中对旋转位置编码的原始论文进行了解析,重点推导了旋转位置编码的公式,本文侧重实现,同时尽量简化数学上的推理,详细推理可见最后的参考文章。复数与极坐标复数
- Llama改进之——分组查询注意力
愤怒的可乐
#NLP项目实战自然语言处理llama深度学习人工智能分组查询注意力旋转位置编码
引言今天介绍LLAMA2模型引入的关于注意力的改进——分组查询注意力(Grouped-queryattention,GQA)1。Transformer中的多头注意力在解码阶段来说是一个性能瓶颈。多查询注意力2通过共享单个key和value头,同时不减少query头来提升性能。多查询注意力可能导致质量下降和训练不稳定,因此常用的是分组查询注意力。然后我们结合上篇文章3探讨的旋转位置编码,将选择位置编
- Llama改进之——均方根层归一化RMSNorm
愤怒的可乐
NLP项目实战#llama
引言在学习完GPT2之后,从本文开始进入Llama模型系列。本文介绍Llama模型的改进之RMSNorm(均方根层归一化)。它是由RootMeanSquareLayerNormalization论文提出来的,可以参阅其论文笔记1。LayerNorm层归一化(LayerNorm)对Transformer等模型来说非常重要,它可以帮助稳定训练并提升模型收敛性。LayerNorm针对一个样本所有特征计算
- Llama改进之——SwiGLU激活函数
愤怒的可乐
#自然语言处理NLP项目实战llama
引言今天介绍LLAMA模型引入的关于激活函数的改进——SwiGLU1,该激活函数取得了不错的效果,得到了广泛地应用。SwiGLU是GLU的一种变体,其中包含了GLU和Swish激活函数。GLUGLU(GatedLinearUnits,门控线性单元)2引入了两个不同的线性层,其中一个首先经过sigmoid函数,其结果将和另一个线性层的输出进行逐元素相乘作为最终的输出:GLU(x,
- 从0实现llama3
讨厌编程但喜欢LLM的学院派
人工智能python开发语言深度学习机器学习pytorch
分享一下从0实现llama的过程流程如下:word-->embeddinglayer-->n*decoderlayer-->finallinearlayer-->output分词器在embedding之前,需要进行分词,将句子分成单词。llama3采用了基于BPE算法的分词器。这个链接实现了一个非常简洁的BPE分词器简易分词器实现BPE分词器(选看)1)训练tokenizer词汇表并合并给定文本,
- ATmega16微控制器编程与应用实践
love彤彤
本文还有配套的精品资源,点击获取简介:ATmega16是一个基于AVR架构的8位微控制器,广泛用于嵌入式系统控制应用。本文将详细介绍如何在ATmega16上实现1602液晶显示、独立键盘操作、数码管扫描、蜂鸣器控制和流水灯设计等常用功能。通过这些功能的实践项目,读者可以掌握C语言在嵌入式系统开发中的应用,包括I/O口编程、定时器设置、中断处理和串行通信等关键技术。1.ATmega16微控制器简介A
- 强化学习RLHF详解
贝塔西塔
强化学习大模型人工智能深度学习机器学习算法语言模型
RLHF(ReinforcementLearningfromHumanFeedback)模型详解一、背景1.传统强化学习的局限性传统的强化学习(ReinforcementLearning,RL)依赖于预定义的奖励函数(RewardFunction),但在复杂任务(如自然语言生成、机器人控制)中,设计精确的奖励函数极为困难。例如:模糊目标:生成“高质量文本”难以量化,无法用简单的指标(如BLEU、R
- 强人工智能是否会诞生于现在的AI之中
一花·一叶
人工智能语言模型
为什么我认为当前AI方法无法实现真正的人工智能?随着大模型的发展日新月异,越来越多的人开始相信我们正在接近通用人工智能(AGI)。然而,作为一名人工智能领域的算法工程师,我反而越来越确信:现有的技术路径——以Transformer为核心的深度神经网络,可能已经达到了它的能力上限。我们或许正站在一个新时代的门槛上:真正的强人工智能将不会诞生于现有的范式中,而需要一条全新的算法路径。Transform
- C++中的前置声明
mj348940862
C++c++数据结构开发语言
一般来说,当你某个文件中,需要用到某个类或者结构体的指针,但是却不能直接包含那个类或者结构体的声明文件时,可以用前置声明解决。前置声明是指对类、函数、模板或者结构体进行声明,仅仅是声明,不包含相关具体的定义。在很多场合我们可以用前置声明来代替#include语句。类的前置声明只是告诉编译器这是一个类型,但无法告知类型的大小,成员等具体内容。在未提供完整的类之前,不能定义该类的对象,也不能在内联成员
- 手把手从零打造 Llama3:解锁下一代预训练模型
会飞的Anthony
信息系统人工智能AIGC自然语言处理人工智能llama3AIGC
引言Llama3相较于Llama2,不仅在模型架构上做了显著优化,尤其是全局查询注意力机制(GQA)的引入,使得模型在大规模数据处理上表现更加出色。同时,Llama3采用了与GPT一致的tiktoken分词器,大幅提升了分词效率。本篇文章将带你从头构建Llama3预训练流程,深入了解其关键细节和实现方式,让你掌握这一下一代模型的核心技术。1.启动训练脚本在这一步中,我们将实现Llama3的预训练框
- 从零实现Llama3:深入解析Transformer架构与实现细节
祁婉菲Flora
从零实现Llama3:深入解析Transformer架构与实现细节llama3-from-scratchllama3一次实现一个矩阵乘法。项目地址:https://gitcode.com/gh_mirrors/ll/llama3-from-scratch引言本文将深入探讨如何从零开始实现Llama3语言模型。我们将从最基本的张量操作开始,逐步构建完整的Transformer架构。通过这个过程,读者
- PyTorch-Llama: 从零开始实现LLaMA 2模型教程
乔昕连
PyTorch-Llama:从零开始实现LLaMA2模型教程pytorch-llamaLLaMA2implementedfromscratchinPyTorch项目地址:https://gitcode.com/gh_mirrors/py/pytorch-llama1.项目介绍PyTorch-Llama是一个在PyTorch平台上完全从零开始实现的LLaMA2模型仓库。该模型是一个强大的自回归语言模
- Redis缓存击穿、缓存穿透、缓存雪崩(定义、产生原因、解决方案--代码示例)
卜锦元
redis数据库数据优化缓存redis数据库
前言Redis缓存作为高性能的数据访问层,在实际开发中经常面临三大经典问题:缓存击穿、缓存穿透、缓存雪崩。本文将从它们各自的定义、产生的原因、实际开发过程中的解决方案出发,为大家详细描述相关的信息,并附有相关的go代码示例(嗯…最近go写的比较多,大家也可以用其它语言带入,原理都是一样的)一、缓存穿透(CachePenetration)❓是什么?客户端频繁请求数据库中根本不存在的Key,缓存不命中
- Redis主从复制详解
卜锦元
redis高可用性数据库redis数据库linux缓存
前言本文对于redis主从复制相关知识进行详细的解释,主要从主从复制的原理、配置方式、数据流转过程、重要概念与机制、常见问题与解决方案、典型使用场景、局限性与处理方案等方面出发,帮助我们更好的理解Redis的主从复制知识。一、Redis主从复制原理(Replication)主从复制是指一个Redis主节点(Master)将数据同步到一个或多个从节点(Slave/Replica),从节点一般以只读方
- 音视频会议服务搭建(设计方案)-01
卜锦元
音视频webrtcgolang流媒体websocket音视频
前言最近在做音视频会议系统服务搭建的工作任务,因为内容过多,我会逐篇分享相关的设计方案、开发思路、编程语言、使用的组件集合等等。如果你也有大型音视频会议系统搭建架构的需求,希望这些可以对你有所帮助。EchoMeet音视频会议系统架构设计项目概述EchoMeet是基于WebRTC技术的企业级音视频会议解决方案,采用三层音视频架构和Go+Node.js双后端微服务设计,实现了高并发、低延迟、可扩展的视
- 抗辐照芯片在核电厂火灾探测器中的应用优势与性能解析
国科安芯
科普网络人工智能运维自动化
一、引言核电厂作为能源供应的关键设施,其安全性备受关注。火灾是威胁核电厂安全运行的重要风险因素之一。在核电厂的特殊环境下,火灾探测器肩负着及时发现火情、保障核电厂安全运行的重任。然而,核电厂存在高能辐射等复杂环境因素,这对火灾探测器中的芯片性能提出了极为严苛的要求。传统芯片在辐射环境下易出现性能退化、功能异常等问题,导致火灾探测器无法准确工作。因此,研发和应用抗辐照芯片成为解决这一问题的关键。抗辐
- Boost.Asio 的 TCP 通信教程
FHKHH
网络编程tcp/ip网络协议网络
一、引言本教程将详细介绍如何使用Boost.Asio库实现一个简单的TCP通信示例,包括服务器端和客户端的代码编写、编译以及运行流程。同时,我们会对通信过程中的各个关键步骤进行详细讲解,帮助读者理解TCP通信在Boost.Asio中的实现方式。后续如果需要扩展功能,例如并发处理多个客户端连接或使用异步通信等,可以在此基础上进行修改。二、准备工作确保系统中已安装Boost库。确保编译器(如g++)能
- Boost.Asio 同步读写操作详解
Boost.Asio同步读写操作详解Boost.Asio是一个高效的C++网络和底层I/O库,提供了多种API用于同步和异步数据传输。本文将详细介绍同步操作及其具体实现,包括write_some、send、write、read_some、receive、read和read_until等。1.同步写:write_some功能:将指定数量的字节写入到套接字。如果发送缓冲区已满,则只写入一部分数据并返回
- c++中类的前置声明
2301_80355452
c++java开发语言
前置声明(forwarddeclaration)和包含头文件(includeheaderfile)是C/C++程序设计中经常遇到的两个基础概念。它们都和“让编译器知道有哪些类型、函数”等信息相关,但本质和作用是完全不同的。下面我会详细、通俗地讲解二者的区别,以及什么情况下选用哪一种。1.前置声明是什么?前置声明(forwarddeclaration)就是提前告诉编译器“小样,后面我会实现/定义一个
- 音视频会议服务搭建(设计方案-两种集成方案对比)-03
卜锦元
流媒体websocket音视频webrtcgolang音视频gonode.jswebrtcc++redismysql
前言在开始计划之前,查阅了不少资料。一种方案是Go层做信令业务,nodejs层来管理和mediasoup的底层交互,通过客户端去调用Go层;第二种方案是客户端直接调用nodejs层来跟mediasoup去交互;最终,当然不出意料的选择了项目复杂的构建方案,为性能去考虑。EchoMeet架构方案对比分析1.两种架构方案概览方案A:Go+Node.js双系统架构(当前方案)前端Vue3+mediaso
- 如何训练一个 Reward Model:RLHF 的核心组件详解
茫茫人海一粒沙
深度学习人工智能强化学习
RewardModel(奖励模型)是RLHF的核心,决定了模型“觉得人类偏好什么”的依据。本文将系统介绍如何从零开始训练一个rewardmodel,包括数据准备、模型结构、损失函数、训练方法与注意事项。什么是RewardModel?RewardModel(RM)是一个评分器:它输入一个文本(通常是prompt+模型回答),输出一个实数分值(reward),表示这个回答的“人类偏好程度”。它不是分类
- pytorch小记(二十六):全面解读 PyTorch 的 `torch.matmul`
pytorch小记(二十六):全面解读PyTorch的`torch.matmul`PyTorch中的`torch.matmul`详解与使用指南一、什么是`torch.matmul`二、基本用法示例1.向量点积(1-D×1-D)2.二维矩阵乘法(2-D×2-D)3.批量矩阵乘法(≥3-D)4.向量与矩阵混合三、与`mm`、`bmm`的区别四、性能与数值稳定性五、典型应用场景六、注意事项七、总结在深度
- pytorch小记(二十七):深入理解 PyTorch 中的 `.contiguous()`:内存布局与数据不变性
pytorch小记(二十七):深入理解PyTorch中的`.contiguous`:内存布局与数据不变性深入理解PyTorch中的`.contiguous()`:内存布局与数据不变性一、张量连续性(contiguity)概念二、`.contiguous()`的作用三、`.contiguous()`是否改变数值?四、与`.clone()`的区别五、常见使用场景六、总结深入理解PyTorch中的.co
- java杨辉三角
3213213333332132
java基础
package com.algorithm;
/**
* @Description 杨辉三角
* @author FuJianyong
* 2015-1-22上午10:10:59
*/
public class YangHui {
public static void main(String[] args) {
//初始化二维数组长度
int[][] y
- 《大话重构》之大布局的辛酸历史
白糖_
重构
《大话重构》中提到“大布局你伤不起”,如果企图重构一个陈旧的大型系统是有非常大的风险,重构不是想象中那么简单。我目前所在公司正好对产品做了一次“大布局重构”,下面我就分享这个“大布局”项目经验给大家。
背景
公司专注于企业级管理产品软件,企业有大中小之分,在2000年初公司用JSP/Servlet开发了一套针对中
- 电驴链接在线视频播放源码
dubinwei
源码电驴播放器视频ed2k
本项目是个搜索电驴(ed2k)链接的应用,借助于磁力视频播放器(官网:
http://loveandroid.duapp.com/ 开放平台),可以实现在线播放视频,也可以用迅雷或者其他下载工具下载。
项目源码:
http://git.oschina.net/svo/Emule,动态更新。也可从附件中下载。
项目源码依赖于两个库项目,库项目一链接:
http://git.oschina.
- Javascript中函数的toString()方法
周凡杨
JavaScriptjstoStringfunctionobject
简述
The toString() method returns a string representing the source code of the function.
简译之,Javascript的toString()方法返回一个代表函数源代码的字符串。
句法
function.
- struts处理自定义异常
g21121
struts
很多时候我们会用到自定义异常来表示特定的错误情况,自定义异常比较简单,只要分清是运行时异常还是非运行时异常即可,运行时异常不需要捕获,继承自RuntimeException,是由容器自己抛出,例如空指针异常。
非运行时异常继承自Exception,在抛出后需要捕获,例如文件未找到异常。
此处我们用的是非运行时异常,首先定义一个异常LoginException:
/**
* 类描述:登录相
- Linux中find常见用法示例
510888780
linux
Linux中find常见用法示例
·find path -option [ -print ] [ -exec -ok command ] {} \;
find命令的参数;
- SpringMVC的各种参数绑定方式
Harry642
springMVC绑定表单
1. 基本数据类型(以int为例,其他类似):
Controller代码:
@RequestMapping("saysth.do")
public void test(int count) {
}
表单代码:
<form action="saysth.do" method="post&q
- Java 获取Oracle ROWID
aijuans
javaoracle
A ROWID is an identification tag unique for each row of an Oracle Database table. The ROWID can be thought of as a virtual column, containing the ID for each row.
The oracle.sql.ROWID class i
- java获取方法的参数名
antlove
javajdkparametermethodreflect
reflect.ClassInformationUtil.java
package reflect;
import javassist.ClassPool;
import javassist.CtClass;
import javassist.CtMethod;
import javassist.Modifier;
import javassist.bytecode.CodeAtt
- JAVA正则表达式匹配 查找 替换 提取操作
百合不是茶
java正则表达式替换提取查找
正则表达式的查找;主要是用到String类中的split();
String str;
str.split();方法中传入按照什么规则截取,返回一个String数组
常见的截取规则:
str.split("\\.")按照.来截取
str.
- Java中equals()与hashCode()方法详解
bijian1013
javasetequals()hashCode()
一.equals()方法详解
equals()方法在object类中定义如下:
public boolean equals(Object obj) {
return (this == obj);
}
很明显是对两个对象的地址值进行的比较(即比较引用是否相同)。但是我们知道,String 、Math、I
- 精通Oracle10编程SQL(4)使用SQL语句
bijian1013
oracle数据库plsql
--工资级别表
create table SALGRADE
(
GRADE NUMBER(10),
LOSAL NUMBER(10,2),
HISAL NUMBER(10,2)
)
insert into SALGRADE values(1,0,100);
insert into SALGRADE values(2,100,200);
inser
- 【Nginx二】Nginx作为静态文件HTTP服务器
bit1129
HTTP服务器
Nginx作为静态文件HTTP服务器
在本地系统中创建/data/www目录,存放html文件(包括index.html)
创建/data/images目录,存放imags图片
在主配置文件中添加http指令
http {
server {
listen 80;
server_name
- kafka获得最新partition offset
blackproof
kafkapartitionoffset最新
kafka获得partition下标,需要用到kafka的simpleconsumer
import java.util.ArrayList;
import java.util.Collections;
import java.util.Date;
import java.util.HashMap;
import java.util.List;
import java.
- centos 7安装docker两种方式
ronin47
第一种是采用yum 方式
yum install -y docker
 
- java-60-在O(1)时间删除链表结点
bylijinnan
java
public class DeleteNode_O1_Time {
/**
* Q 60 在O(1)时间删除链表结点
* 给定链表的头指针和一个结点指针(!!),在O(1)时间删除该结点
*
* Assume the list is:
* head->...->nodeToDelete->mNode->nNode->..
- nginx利用proxy_cache来缓存文件
cfyme
cache
user zhangy users;
worker_processes 10;
error_log /var/vlogs/nginx_error.log crit;
pid /var/vlogs/nginx.pid;
#Specifies the value for ma
- [JWFD开源工作流]JWFD嵌入式语法分析器负号的使用问题
comsci
嵌入式
假如我们需要用JWFD的语法分析模块定义一个带负号的方程式,直接在方程式之前添加负号是不正确的,而必须这样做:
string str01 = "a=3.14;b=2.71;c=0;c-((a*a)+(b*b))"
定义一个0整数c,然后用这个整数c去
- 如何集成支付宝官方文档
dai_lm
android
官方文档下载地址
https://b.alipay.com/order/productDetail.htm?productId=2012120700377310&tabId=4#ps-tabinfo-hash
集成的必要条件
1. 需要有自己的Server接收支付宝的消息
2. 需要先制作app,然后提交支付宝审核,通过后才能集成
调试的时候估计会真的扣款,请注意
- 应该在什么时候使用Hadoop
datamachine
hadoop
原帖地址:http://blog.chinaunix.net/uid-301743-id-3925358.html
存档,某些观点与我不谋而合,过度技术化不可取,且hadoop并非万能。
--------------------------------------------万能的分割线--------------------------------
有人问我,“你在大数据和Hado
- 在GridView中对于有外键的字段使用关联模型进行搜索和排序
dcj3sjt126com
yii
在GridView中使用关联模型进行搜索和排序
首先我们有两个模型它们直接有关联:
class Author extends CActiveRecord {
...
}
class Post extends CActiveRecord {
...
function relations() {
return array(
'
- 使用NSString 的格式化大全
dcj3sjt126com
Objective-C
格式定义The format specifiers supported by the NSString formatting methods and CFString formatting functions follow the IEEE printf specification; the specifiers are summarized in Table 1. Note that you c
- 使用activeX插件对象object滚动有重影
蕃薯耀
activeX插件滚动有重影
使用activeX插件对象object滚动有重影 <object style="width:0;" id="abc" classid="CLSID:D3E3970F-2927-9680-BBB4-5D0889909DF6" codebase="activex/OAX339.CAB#
- SpringMVC4零配置
hanqunfeng
springmvc4
基于Servlet3.0规范和SpringMVC4注解式配置方式,实现零xml配置,弄了个小demo,供交流讨论。
项目说明如下:
1.db.sql是项目中用到的表,数据库使用的是oracle11g
2.该项目使用mvn进行管理,私服为自搭建nexus,项目只用到一个第三方 jar,就是oracle的驱动;
3.默认项目为零配置启动,如果需要更改启动方式,请
- 《开源框架那点事儿16》:缓存相关代码的演变
j2eetop
开源框架
问题引入
上次我参与某个大型项目的优化工作,由于系统要求有比较高的TPS,因此就免不了要使用缓冲。
该项目中用的缓冲比较多,有MemCache,有Redis,有的还需要提供二级缓冲,也就是说应用服务器这层也可以设置一些缓冲。
当然去看相关实现代代码的时候,大致是下面的样子。
[java]
view plain
copy
print
?
public vo
- AngularJS浅析
kvhur
JavaScript
概念
AngularJS is a structural framework for dynamic web apps.
了解更多详情请见原文链接:http://www.gbtags.com/gb/share/5726.htm
Directive
扩展html,给html添加声明语句,以便实现自己的需求。对于页面中html元素以ng为前缀的属性名称,ng是angular的命名空间
- 架构师之jdk的bug排查(一)---------------split的点号陷阱
nannan408
split
1.前言.
jdk1.6的lang包的split方法是有bug的,它不能有效识别A.b.c这种类型,导致截取长度始终是0.而对于其他字符,则无此问题.不知道官方有没有修复这个bug.
2.代码
String[] paths = "object.object2.prop11".split("'");
System.ou
- 如何对10亿数据量级的mongoDB作高效的全表扫描
quentinXXZ
mongodb
本文链接:
http://quentinXXZ.iteye.com/blog/2149440
一、正常情况下,不应该有这种需求
首先,大家应该有个概念,标题中的这个问题,在大多情况下是一个伪命题,不应该被提出来。要知道,对于一般较大数据量的数据库,全表查询,这种操作一般情况下是不应该出现的,在做正常查询的时候,如果是范围查询,你至少应该要加上limit。
说一下,
- C语言算法之水仙花数
qiufeihu
c算法
/**
* 水仙花数
*/
#include <stdio.h>
#define N 10
int main()
{
int x,y,z;
for(x=1;x<=N;x++)
for(y=0;y<=N;y++)
for(z=0;z<=N;z++)
if(x*100+y*10+z == x*x*x
- JSP指令
wyzuomumu
jsp
jsp指令的一般语法格式: <%@ 指令名 属性 =”值 ” %>
常用的三种指令: page,include,taglib
page指令语法形式: <%@ page 属性 1=”值 1” 属性 2=”值 2”%>
include指令语法形式: <%@include file=”relative url”%> (jsp可以通过 include