用红黑树封装实现map与set

红黑树

红黑树 ,是一种 二叉搜索树 ,但 在每个结点上增加一个存储位表示结点的颜色,可以是 Red
Black 。 通过对 任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路
径会比其他路径长出俩倍 ,因而是 接近平衡
对比AVL树的严格平衡(左右子树高度差不超过1),需要更多的旋转才能控制这个高度
红黑树是近似平衡(最长路径不超过最短路径的2倍) 降低了插入和旋转的次数,
所以在经常进行增删的结构中性能比 AVL 树更优,而且红黑树实现比较简单,所以实际运用中红
黑树更多
用红黑树封装实现map与set_第1张图片

红黑树的性质 

1. 每个结点不是 红色 就是黑色
2. 根节点 黑色  
3. 如果一个节点是红色的,则它的两个孩子结点是黑色的 ,即 不能出现连续的红节点
    父子节点:黑+黑  黑+红 红+黑
4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均 包含相同数目的黑色结点
    即 每条路径都包含相同数量的黑节点 
5. 每个叶子结点都是黑色的 ( 此处的叶子结点指的是空结点 )
    即NIL节点,方便数路径,不容易出错
用红黑树封装实现map与set_第2张图片

用红黑树封装实现map与set_第3张图片 

红黑树的插入

 新增节点的颜色默认给红色

因为新增节点若为黑色节点,插入后会影响所有路径(红黑树的性质规定每条路径必须有相同数量的黑色节点)

而新增插入红色节点只会影响父节点,(父子节点的组合:黑+黑,黑+红,红+黑)

(若父节点为黑,则无影响,若父节点为红,则有连续的红节点,需要调整,下面会讲)

用红黑树封装实现map与set_第4张图片

红黑树节点的设计:

enum Colour
{
	RED,
	BLACK
};

template // T可以是set的K,可以是map的pair 
struct RBTreeNode
{
	RBTreeNode* _left;
	RBTreeNode* _right; 
	RBTreeNode* _parent;

	T _data;
	Colour _col;

	RBTreeNode(const T& data)
		:_left(nullptr)
		,_right(nullptr)
		,_parent(nullptr)
		,_data(data)
		,_col(RED)//新增节点默认给红色
	{}
};
红黑树是在二叉搜索树的基础上加上其平衡限制条件,故而红黑树的插入分为两步:
1 插入新增节点
2 判断新增节点插入后是否需要调整红黑树
(新增节点可能会导致连续红节点的出现,破坏了红黑树的规则)
什么时候需要调整红黑树:出现了连续的红节点,即新增节点的父节点为红色节点时
(新增节点默认为红,若父节点为黑,则没有违反红黑树的任何规则,插入完成后无需处理)
约定 :cur 为当前节点, p 为父节点, g 为祖父节点, u 为叔叔节点
红黑树的调整关键看叔叔节点
情况一 : cur 为红, p 为红, g 为黑, u存在且为红
(因为在cur插入之前,没有违反红黑树的任何规则,所以当p为红时,g一定为黑,不可能出现连续的红色节点)
解决方式 :将 p,u 改为黑, g 改为红,然后把 g 当成 cur ,继续向上调整
用红黑树封装实现map与set_第5张图片

情况二: cur为红,p为红,g为黑,u不存在/u存在且为黑  

在这种情况下,单纯变色无法解决问题,需要旋转+变色

解决方案:旋转(单选/双旋)+变色

用红黑树封装实现map与set_第6张图片

需要 单旋 时的情况:
p g 的左孩子, cur p 的左孩子,则进行右单旋
p g 的右孩子, cur p 的右孩子,则进行左单旋
p g 变色 -- p变黑,g变红

需要双旋时的情况:

p g 的左孩子, cur p 的右孩子,则进行左右双旋
(先对p节点所在子树左单旋,再对g节点所在子树右单旋)
p g 的右孩子, cur p 的左孩子,则进行右左双旋
(先对p节点所在子树右单旋,再对g节点所在子树左单旋)
cur,g变色-- cur变黑,g变红
用红黑树封装实现map与set_第7张图片

代码实现:

pair Insert(const T& data)
	{
		//插入一个红色节点
		if (_root == nullptr)
		{
			_root = new Node(data);
			_root->_col = BLACK;
			return make_pair(_root, true);
		}
			
		Node* cur = _root;
		Node* parent = nullptr;
		KeyOfT kot;

		while (cur)
		{
			if (kot(cur->_data) < kot(data))
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (kot(cur->_data) > kot(data))
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return make_pair(cur, false);
			}
		}

		//新增节点给红色
		cur = new Node(data);
		Node* newnode = cur;
		if (kot(parent->_data)>kot(data))
		{
			parent->_left = cur;
			cur->_parent = parent;
		}
		else
		{
			parent->_right = cur;
			cur->_parent = parent;
		}

		//红黑树调整--有连续的红节点
		while (parent && parent->_col == RED)
		{
			Node* grandfather = parent->_parent;

			if (parent == grandfather->_left)
			{
				//     g
				//   p   u
				// c
				Node* uncle = grandfather->_right;
				if (uncle && uncle->_col == RED)//uncle存在且为红--变色
				{
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;

					//继续向上调整
					cur = grandfather;
					parent = cur->_parent;
				}
				else//uncle不存在或者存在且为黑--旋转+变色
				{
					if (cur == parent->_left)//右单旋
					{
						//     g
						//   p
						// c
						RotateR(grandfather);
						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					else//左右双旋
					{
						//     g
						//   p
						//     c
						RotateL(parent);
						RotateR(grandfather);
						cur->_col = BLACK;
						grandfather->_col = RED;
					}
					break;
				}
			}
			else//parent == grandfather->_right
			{
				//     g
				//   u   p 
				//          c
				Node* uncle = grandfather->_left;
				if (uncle && uncle->_col == RED)//uncle存在且为红--变色
				{
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;

					//继续向上调整
					cur = grandfather;
					parent = cur->_parent;
				}
				else//uncle不存在或者存在且为黑--旋转+变色
				{
					if (cur == parent->_right)//左单旋
					{
						RotateL(grandfather);
						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					else//右左双旋
					{
						//     g
						//   u   p 
						//     c
						RotateR(parent);
						RotateL(grandfather);
						cur->_col = BLACK;
						grandfather->_col = RED;
					}
					break;
				}
			}
		}
		_root->_col = BLACK;
		return make_pair(newnode, true);
	}

需要用到的左单旋 右单旋:(在AVL数的代码实现中有具体讲解)

void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		parent->_right = subRL;
		if (subRL)
		{
			subRL->_parent = parent;
		}

		Node*parentParent = parent->_parent;
		parent->_parent = subR;
		subR->_left = parent;
		if (_root == parent)
		{
			_root = subR;
			subR->_parent = nullptr;
		}
		else
		{
			if (parentParent->_left == parent)
			{
				parentParent->_left = subR;
			}
			else
			{
				parentParent->_right = subR;
			}
			subR->_parent = parentParent;
		}
	}

	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;

		Node* parentParent = parent->_parent;
		subL->_right = parent;
		parent->_parent = subL;

		if (_root == parent)
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			if (parentParent->_left == parent)
			{
				parentParent->_left = subL;
			}
			else
			{
				parentParent->_right = subL;
			}
			subL->_parent = parentParent;
		}
	}


 红黑树的验证

1. 验证 其是否满足二叉搜索树 ( 中序遍历是否为有序序列 )
2. 验证 其是否满足红黑树的性质
bool IsBalance()
	{
		//检查根节点
		if (_root == nullptr)
			return true;

		if (_root->_col == RED)
			return false;
		//检查是否有连续的红节点+每条路径的黑色节点数目是否一样
		
		int refVal = 0;//参考值
		Node* cur = _root;
		while (cur)//以最左边的路径上的黑色节点数目为参考值
		{
			if (cur->_col == BLACK)
				refVal++;
			cur = cur->_left;
		}

		int blacknum = 0;
		return  Check(_root, refVal, blacknum);

	}

	bool Check(Node* root, const int refVal,int blacknum)
	{
		if (root == nullptr)
		{
			if (blacknum != refVal)
			{
				cout << "存在黑色节点数量不相等的路径" << endl;
				return false;
			}
			return true;
		}

		if (root->_col == BLACK)//节点为黑色--统计
		{
			blacknum++;
		}
		
		if(root->_col == RED && root->_parent->_col == RED)//节点为红色--检查
		{
			
			cout << "有连续的红色节点" << endl;
			return false;
		}

		return Check(root->_left, refVal, blacknum)
			&& Check(root->_right, refVal, blacknum);
	}

红黑树模拟实现map与set

代码:

MyMap.h

#pragma once
#include"RBTree.h"

namespace djx
{
	template
	class map
	{
	public:
		struct MapKeyOfT//获取关键字K,map存储的是pair
		{
			const K& operator()(const pair&kv)
			{
				return kv.first;
			}
		};

		// 对类模板取内嵌类型,加typename告诉编译器这里是类型
		typedef typename RBTree ,MapKeyOfT>::iterator iterator;
		typedef typename RBTree ,MapKeyOfT>::const_iterator const_iterator;

		iterator begin()
		{
			return _t.begin();
		}

		iterator end()
		{
			return _t.end();
		}

		V& operator[](const K&key)
		{
			pair ret = insert(make_pair(key, V()));
			return ret.first->second;//ret.first是迭代器,能够找到节点
		}

		pair insert(const pair&kv)
		{
			return _t.Insert(kv);
		}

	private:
		RBTree ,MapKeyOfT> _t;//封装红黑树
	};
}

MySet.h

#pragma once
#include"RBTree.h"

namespace djx
{
	template
	class set
	{
	public:
		struct SetKeyOfT//仿函数,返回关键字K,set存储的就是K
		{
			const K& operator()(const K& key)
			{
				return key;
			}
		};

		typedef typename RBTree::const_iterator iterator;//set中的元素不可被修改,所以普通迭代器就用const_iterator来实现
		typedef typename RBTree::const_iterator const_iterator;

		iterator begin()const
		{
			return _t.begin();
		}

		iterator end() const
		{
			return _t.end();
		}

		pair insert(const K& key)
		{
			return _t.Insert(key);
		}

	private:
		RBTree _t;
	};
}

RBTree.h

#pragma once

// set ->key
// map ->key/value
enum Colour
{
	RED,
	BLACK
};

template
struct RBTreeNode//节点
{
	RBTreeNode* _left;
	RBTreeNode* _right; 
	RBTreeNode* _parent;

	T _data;
	Colour _col;

	RBTreeNode(const T& data)
		:_left(nullptr)
		,_right(nullptr)
		,_parent(nullptr)
		,_data(data)
		,_col(RED)
	{}
};

template
struct __TreeIterator//迭代器
{
	typedef RBTreeNode Node;
	typedef __TreeIterator Self;
	Node* _node;

	__TreeIterator(Node* node)
		:_node(node)
	{}


	Ref operator* ()
	{
		return _node->_data;
	}

	Ptr operator->()
	{
		return &_node->_data;
	}

	Self& operator++()
	{
		//顺序:左 中 右
		if (_node->_right)//这颗子树没有走完--找右子树的最左节点
		{
			Node* cur = _node->_right;
			while (cur->_left)
			{
				cur = cur->_left;
			}
			_node = cur;
		}
		else//这颗子树已经走完--找一个祖先(这个子树是它左孩子的祖先)
		{
			Node* cur = _node;
			Node* parent = cur->_parent;
			while (parent && parent->_right == cur)
			{
				cur = parent;
				parent = cur->_parent;
			}
			_node = parent;
		}
		return *this;
	}

	bool operator!=(const Self& s)
	{
		return s._node != _node;
	}

	bool operator==(const Self& s)
	{
		return s._node == _node;
	}
};

template
class RBTree
{
	typedef RBTreeNode Node;
public:
	typedef __TreeIterator iterator;
	typedef __TreeIterator const_iterator;

	iterator begin()//红黑树中序序列得到有序序列,begin()可设计成最左节点的迭代器
	{
		Node* cur = _root;
		while (cur && cur->_left)
		{
			cur = cur->_left;
		}
		return iterator(cur);
	}

	iterator end()
	{
		return iterator(nullptr);
	}

	const_iterator begin()const
	{

		Node* cur = _root;
		while (cur&& cur->_left)
		{
			cur = cur->_left;
		}
		return const_iterator(cur);
	}

	const_iterator end()const
	{
		return const_iterator(nullptr);
	}
    
    //返回值不能是pair,因为set的普通迭代器实际也是const_iterator,set设计insert时要返回的pair 实际是pair ,而封装红黑树,复用红黑树的Insert(返回值若是pair,红黑树的普通迭代器就是普通迭代器,那么因为普通迭代器iterator不能转成const_iterator,所以代码会报错)
设计成pair就很好,节点指针Node*可以通过const_iterator迭代器的构造函数完成转变
	pair Insert(const T& data)
	{
		//插入一个红色节点
		if (_root == nullptr)
		{
			_root = new Node(data);
			_root->_col = BLACK;
			return make_pair(_root, true);
		}
			
		Node* cur = _root;
		Node* parent = nullptr;
		KeyOfT kot;

		while (cur)
		{
			if (kot(cur->_data) < kot(data))
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (kot(cur->_data) > kot(data))
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return make_pair(cur, false);
			}
		}

		//新增节点给红色
		cur = new Node(data);
		Node* newnode = cur;
		if (kot(parent->_data)>kot(data))
		{
			parent->_left = cur;
			cur->_parent = parent;
		}
		else
		{
			parent->_right = cur;
			cur->_parent = parent;
		}

		//红黑树调整--有连续的红节点
		while (parent && parent->_col == RED)
		{
			Node* grandfather = parent->_parent;

			if (parent == grandfather->_left)
			{
				//     g
				//   p   u
				// c
				Node* uncle = grandfather->_right;
				if (uncle && uncle->_col == RED)//uncle存在且为红--变色
				{
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;

					//继续向上调整
					cur = grandfather;
					parent = cur->_parent;
				}
				else//uncle不存在或者存在且为黑--旋转+变色
				{
					if (cur == parent->_left)//右单旋
					{
						//     g
						//   p
						// c
						RotateR(grandfather);
						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					else//左右双旋
					{
						//     g
						//   p
						//     c
						RotateL(parent);
						RotateR(grandfather);
						cur->_col = BLACK;
						grandfather->_col = RED;
					}
					break;
				}
			}
			else//parent == grandfather->_right
			{
				//     g
				//   u   p 
				//          c
				Node* uncle = grandfather->_left;
				if (uncle && uncle->_col == RED)//uncle存在且为红--变色
				{
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;

					//继续向上调整
					cur = grandfather;
					parent = cur->_parent;
				}
				else//uncle不存在或者存在且为黑--旋转+变色
				{
					if (cur == parent->_right)//左单旋
					{
						RotateL(grandfather);
						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					else//右左双旋
					{
						//     g
						//   u   p 
						//     c
						RotateR(parent);
						RotateL(grandfather);
						cur->_col = BLACK;
						grandfather->_col = RED;
					}
					break;
				}
			}
		}
		_root->_col = BLACK;
		return make_pair(newnode, true);
	}

	iterator Find(const K& key)
	{
		//...

		return end();
	}

	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		parent->_right = subRL;
		if (subRL)
		{
			subRL->_parent = parent;
		}

		Node*parentParent = parent->_parent;
		parent->_parent = subR;
		subR->_left = parent;
		if (_root == parent)
		{
			_root = subR;
			subR->_parent = nullptr;
		}
		else
		{
			if (parentParent->_left == parent)
			{
				parentParent->_left = subR;
			}
			else
			{
				parentParent->_right = subR;
			}
			subR->_parent = parentParent;
		}
	}

	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;

		Node* parentParent = parent->_parent;
		subL->_right = parent;
		parent->_parent = subL;

		if (_root == parent)
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			if (parentParent->_left == parent)
			{
				parentParent->_left = subL;
			}
			else
			{
				parentParent->_right = subL;
			}
			subL->_parent = parentParent;
		}
	}



	bool IsBalance()//红黑树的验证
	{
		//检查根节点
		if (_root == nullptr)
			return true;

		if (_root->_col == RED)
			return false;
		//检查是否有连续的红节点+每条路径的黑色节点数目是否一样
		
		int refVal = 0;//参考值
		Node* cur = _root;
		while (cur)//以最左边的路径上的黑色节点数目为参考值
		{
			if (cur->_col == BLACK)
				refVal++;
			cur = cur->_left;
		}

		int blacknum = 0;
		return  Check(_root, refVal, blacknum);

	}

	bool Check(Node* root, const int refVal,int blacknum)
	{
		if (root == nullptr)
		{
			if (blacknum != refVal)
			{
				cout << "存在黑色节点数量不相等的路径" << endl;
				return false;
			}
			return true;
		}

		if (root->_col == BLACK)//节点为黑色--统计
		{
			blacknum++;
		}
		
		if(root->_col == RED && root->_parent->_col == RED)//节点为红色--检查
		{
			
			cout << "有连续的红色节点" << endl;
			return false;
		}

		return Check(root->_left, refVal, blacknum)
			&& Check(root->_right, refVal, blacknum);
	}

	int Height()
	{
		return _Height(_root);
	}

	int _Height(Node* root)
	{
		if (root == nullptr)
			return 0;

		int leftHeight = _Height(root->_left);
		int rightHeight = _Height(root->_right);
		return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
	}

	size_t Size()
	{
		return _Size(_root);
	}

	size_t _Size(Node* root)
	{
		if (root == nullptr)
			return 0;

		return _Size(root->_left) + _Size(root->_right) + 1;
	}
private:
	Node* _root = nullptr;
};

处理设计红黑树Insert函数返回值的细节:

用红黑树封装实现map与set_第8张图片

你可能感兴趣的:(C++,c++)