- SpringAI赋能Java开发打造智能应用
java技术小馆
javaAI编程
一、SpringAI是什么?为什么你需要它?想象一下,你的Java应用能够:理解自然语言自动生成代码智能分析数据提供个性化推荐这就是SpringAI带来的变革!它是Spring官方推出的AI集成框架,让你的Java应用轻松获得AI能力。传统开发vsSpringAI开发对比:能力传统开发SpringAI开发自然语言处理需要集成第三方SDK开箱即用开发效率手动实现复杂逻辑自动生成代码维护成本高低可扩展
- LLM OS 系统架构详细设计
AI天才研究院
AI大模型企业级应用开发实战系统架构
LLMOS系统架构详细设计1.背景介绍近年来,大型语言模型(LargeLanguageModel,LLM)取得了飞速发展,在自然语言处理、对话系统、文本生成等领域展现出卓越的性能。然而,现有的LLM系统架构仍然存在诸多局限性,例如可扩展性不足、资源利用率低下、缺乏灵活的应用开发支持等。为了充分发挥LLM的潜力,迫切需要一个高效、灵活、易用的LLM操作系统(OperatingSystem,OS)。本
- mac系统下安装pycharm
连小黑
pythonpycharmmacospython
mac系统下安装pycharm前言Windows系统安装教程传送门链接:https://blog.csdn.net/lianxiaohei/article/details/121694126随着人工智能的不断发展,机器学习这门技术也越来越重要,也有很多人都因为做自动化,爬虫会学python,今天写的是pycharm编译器,在mac上如何安装,废话不多说,上步骤一、第一步下载示例:下载安装软件的第一
- 企业知识图谱构建: 整合结构化与非结构化数据
CaritoB
非结构化数据管理知识图谱
随着企业数据的爆炸性增长,如何有效地整合、分析和利用这些数据成为了重要课题。企业知识图谱作为一种先进的知识管理工具,通过将不同来源的结构化和非结构化数据统一在一个语义化的框架中,能够为企业提供全局性视角,提升决策效率和创新能力。本文将探讨如何在企业中构建知识图谱,并有效整合结构化与非结构化数据,为企业提供智能化的数据支持。1.企业知识图谱的基本概念知识图谱是一种语义网络,它通过节点和边的形式,将实
- Langchain解锁LLM大语言模型的结构化输出能力(多种实现方案)
晨欣
langchain语言模型人工智能
在LangChain解锁LLM大语言模型的结构化输出能力:调用with_structured_output()方法这篇博客中,我们了解了格式化LLM输出内容的必要性以及如何通过调用langchain框架中提供的with_structured_output()方法对LLM输出进行格式化(三种可选方式:基于TypedDict类(类型化字典)、JSONSchema(JSON模式)和Pydantic类)。
- 语义向量模型全解:从基础到现在的deepseek中的语义向量主流模型
来自于狂人
人工智能语言模型
一、语义向量模型:自然语言处理的基石语义向量模型(SemanticVectorModel)是自然语言处理(NLP)的核心技术,它将词汇、句子或文档映射为高维向量,在数学空间中量化语义信息。通过向量距离(如余弦相似度)衡量语义的相似性,支撑了搜索引擎、情感分析、机器翻译等实际应用。1.1发展简史1980s~2000s:基于统计的浅层模型,如TF-IDF(直接表征词的重要性)、LSA(通过矩阵分解降维
- 基于Ubuntu+vLLM+NVIDIA T4高效部署DeepSeek大模型实战指南
来自于狂人
python人工智能pytorch语言模型
一、前言:拥抱vLLM与T4显卡的强强联合在探索人工智能的道路上,如何高效地部署和运行大型语言模型(LLMs)一直是一个核心挑战。尤其是当我们面对资源有限的环境时,这个问题变得更加突出。原始的DeepSeek-R1-32B模型虽然强大,但在T4显卡上遭遇了显存溢出的问题,这限制了其在实际应用中的潜力。为了解决这一难题,我们转向了官方提供的优化版本——DeepSeek-R1-Distill-Qwen
- DeepSeek 提示词技巧深度解析:从原理到实践
悠悠空谷1615
经验分享深度学习语言模型
深度掌握AI交互:DeepSeek提示词技巧全解析突破认知:重新理解AI对话的本质在与DeepSeek等大语言模型交互时,我们需要建立全新的对话范式。不同于人类对话的模糊性与容错性,AI对话遵循"输入决定输出"的确定性原则。统计数据显示,经过专业提示词训练的用户,其获取有效答案的成功率可提升300%以上。要实现这种质的飞跃,需要掌握以下核心认知:1.信息解码机制:AI通过token化处理理解文本,
- 2025年初-值得关注的几款推理模型
数据分析能量站
机器学习人工智能
1Claude3.7SonnetClaude3.7Sonnet是由AI研究公司Anthropic开发的最新混合推理模型,于2025年2月24日发布。这款模型被定位为“迄今最智能的模型”,并首次引入了混合推理功能,结合了普通大型语言模型(LLM)和专门的推理模型能力。核心特点与功能混合推理模式:Claude3.7Sonnet具有标准和扩展两种思考模式。标准模式提供近乎即时的响应,适合快速交互;扩展思
- 深度学习算法模型:从原理到未来
YDH_AlwaysRunning
深度学习
近年来,人工智能(AI)技术以前所未有的速度改变着人类生活,而深度学习的崛起无疑是这场技术革命的核心驱动力。从手机中的语音助手到医学影像的智能诊断,从自动驾驶汽车到生成式AI创作的诗歌和画作,深度学习算法模型正逐渐渗透到社会的每个角落。本文将从基本原理出发,解析典型模型的运作机制,探讨其应用现状与发展趋势,带您全面认识这一改变世界的技术。一、深度学习的基本原理:让机器学会"思考"1.1神经网络的生
- python 正则表达式
李昊哲小课
大数据人工智能pythonpython正则表达式数据分析人工智能大数据
#coding:utf-8importre常用函数代码3-1使用match函数匹配文本match函数,从字符串起始位置匹配正则表达式,返回Match对象(匹配失败返回None)。text1='自然语言处理是研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法。自然语言处理是一门融语言学、计算机科学、数学于一体的科学。'print('匹配的结果是:',re.match(r'自然语言处理
- MLM: 掩码语言模型的预训练任务
XianxinMao
语言模型人工智能自然语言处理
MLM:掩码语言模型的预训练任务掩码语言模型(MaskedLanguageModel,MLM)是一种用于训练语言模型的预训练任务,其核心目标是帮助模型理解和预测语言中的上下文关系。以下是对这一概念的详细说明:基本定义:MLM是一种通过将输入文本中的部分词语随机掩盖(即用掩码标记替代),让模型在观察到其他未掩盖词语的情况下,预测这些被掩盖词的任务。任务流程:首先,将一段文本输入到模型中。该文本的一部
- AI 芯片全解析:定义、市场趋势与主流芯片对比
嵌入式Jerry
AI人工智能物联网嵌入式硬件服务器运维
1.引言:什么是AI芯片?随着人工智能(AI)的快速发展,AI计算的需求不断增长,从云计算到边缘计算,AI芯片成为推动智能化时代的核心动力。那么,什么样的芯片才算AI芯片?与普通处理器(如CPU、GPU)相比,AI芯片有什么不同?本文将详细解析AI芯片的定义、核心特性、市场上的流行产品(国内外),以及AI芯片的定位与发展趋势。2.什么才算AI芯片?2.1AI芯片的核心特性AI芯片专为神经网络计算、
- 预训练模型微调与下游任务迁移学习技术
AGI大模型与大数据研究院
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍机器学习技术近年来在计算机视觉、自然语言处理等领域取得了飞速发展,这离不开大规模预训练模型的贡献。预训练模型通过在海量数据上的自监督学习,学习到了丰富的特征表示,为下游任务提供了强大的初始化。而对预训练模型进行有效的微调,可以充分利用预训练知识,在有限数据上快速达到出色的性能。此外,迁移学习技术也为模型在不同任务间的知识复用提供了有效途径。本文将详细介绍预训练模型微调与下游任务迁移学习
- 什么是预训练语言模型下游任务?
衣衣困
语言模型人工智能自然语言处理
问题:Word2Vec模型是预训练模型吗?由于训练的特性,word2Vec模型一定是与训练模型。给定一个词先使用独热编码然后使用预训练好的Q矩阵得到这个词的词向量。这里指的是词向量本身就是预训练的语言模型。什么是下游任务?在自然语言处理(NLP)和机器学习领域,下游任务(downstreamtasks)指的是使用已经训练好的模型或表示(如词向量、预训练的模型等)来解决的具体任务。这些任务通常依赖于
- DeepSeek:大模型领域的创新力量
Kurbaneli
服务器
在人工智能大模型蓬勃发展的时代,DeepSeek以其独特的技术优势和广泛的应用潜力,迅速在市场中崭露头角。自年初发布以来,DeepSeek引发了行业内外的高度关注,对众多领域的发展产生了深远影响。一、技术优势剖析DeepSeek在技术层面展现出了诸多亮点。其核心的语言模型架构经过精心设计与优化,能够高效处理海量文本数据,实现精准的语义理解和生成。在自然语言处理任务中,无论是基础的文本翻译、问答系统
- 大语言模型原理与工程实践:大语言模型推理工程推理加速:算子优化
AI天才研究院
计算DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍近年来,大语言模型(LargeLanguageModel,LLM)在自然语言处理(NLP)领域取得了显著的进展。其中,推理(Inference)过程是大语言模型的核心环节之一。然而,随着模型规模的不断扩大,推理过程中的计算复杂度和延时也逐渐成为制约模型应用的重要因素。因此,如何实现大语言模型推理工程的推理加速,成为研究者和工程师迫切需要解决的问题。2.核心概念与联系在本文中,我们将深入
- AI辅助的企业估值报告生成器
AI智能涌现深度研究
DeepSeekR1&大数据AI人工智能人工智能ai
AI辅助的企业估值报告生成器关键词AI辅助估值企业估值报告数据处理机器学习算法报告生成器摘要本文将探讨如何利用人工智能技术辅助企业估值报告的生成。通过分析估值报告的重要性、AI技术在估值报告中的应用场景、估值模型与数据处理方法,以及机器学习算法在估值中的应用,本文旨在为企业和投资者提供一个高效、准确、可视化的估值报告生成解决方案。同时,本文还将介绍一个估值报告生成器的实现过程,并通过实际案例进行分
- 全套DeepSeek使用手册分享【清华北大出品】
咪咪360
pdfAI写作AIGC人工智能学习
资料链接:https://pan.quark.cn/s/517afdb4419c这两天,清华大学和北京大学的AI学习手册火了!随着人工智能的日益火爆,人们越来越重视AI的学习,而清华北大也顺应潮流,送出重磅福利。短短不到一个月,连续产出了多本高质量的DeepSeek学习手册。帮助普通人高效便捷的学习AI。完整版学习资料我已经帮大家整理好了,放在开头,大家自行领取学习。
- 微调(Fine-tuning)
路野yue
人工智能深度学习
微调(Fine-tuning)是自然语言处理(NLP)和深度学习中的一种常见技术,用于将预训练模型(Pre-trainedModel)适配到特定任务上。它的核心思想是:在预训练模型的基础上,通过少量任务相关的数据进一步训练模型,使其更好地适应目标任务。1.微调的核心思想预训练模型:像BERT、GPT这样的模型,已经在大量通用文本数据上进行了预训练,学习到了丰富的语言知识(如语法、语义、上下文关系等
- AI Agent,大模型重要落地方向
IT猫仔
人工智能语言模型架构搜索引擎机器学习
01什么是AIAgent?OpenAI将AIAgent定义为,以大语言模型为大脑驱动,具有自主理解感知、规划、记忆和使用工具的能力,能自动化执行完成复杂任务的系统。在计算机、人工智能专业技术领域,一般将agent译为“智能体”,即是在一定的环境中体现出自治性、反应性、社会性、预动性、思辨性(慎思性)、认知性等一种或多种智能特征的软件或硬件实体。它具有记忆、规划、行动和使用工具四个主要模块。通过四个
- AI人工智能 Agent:对教育的影响
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI人工智能Agent:对教育的影响1.背景介绍1.1教育领域的转变随着科技的飞速发展,教育领域也在经历着前所未有的变革。传统的教学模式已经无法完全满足现代社会对人才培养的需求。在这种背景下,人工智能(AI)技术应运而生,为教育领域带来了全新的机遇和挑战。1.2人工智能在教育中的作用人工智能技术可以为教育提供个性化、智能化和高效的解决方案。AI智能代理(Agent)作为人工智能的重要组成部分,正在
- 项目开发实录(一):基于RDK X5的智能垃圾分类垃圾桶
一团乱毛线�
RDKX5地瓜机器人分类人工智能
文章目录项目简介硬件及材料列表整体架构流程技术细节后续开发安排-----------------------------分割线----------------------------------项目简介基于RDKX5开发板的智能垃圾分类垃圾桶项目,旨在利用人工智能技术实现垃圾的自动识别与分类。垃圾桶硬件装置应实现对行人投入垃圾的四分类投放(可回收垃圾、有害垃圾、厨余垃圾、其他垃圾)。该系统主要由摄
- 3 步低代码构建 AI 股票分析助手
人工智能技术资讯
低代码人工智能
在金融服务行业的数字化转型浪潮中,构建一个灵活、可扩展、高度可用的现代IT架构是金融机构面临的重中之重。在这一过程中,生成式人工智能(GenerativeAI)正成为助力金融从业者提高工作效率、优化决策过程的重要工具。在金融市场上,买方机构通常会努力发掘有关金融市场运作的信息,以期获得战胜市场的能力。他们通常需要发掘对投资组合风险有重大影响的风险因子,比如市场因子、行业因子、规模因子、价值因子等;
- 《DataWorks:为人工智能算法筑牢高质量数据根基》
人工智能深度学习
在当今数字化时代,人工智能(AI)技术的迅猛发展深刻地改变着各个行业的面貌。从智能推荐系统到医疗影像诊断,从自动驾驶到自然语言处理,AI正以前所未有的速度渗透到我们生活和工作的方方面面。而在这一系列AI应用的背后,高质量的训练数据是其能够发挥强大效能的关键所在。就如同巧妇难为无米之炊,没有优质的数据,再先进的AI算法也难以施展拳脚。阿里巴巴的DataWorks,作为一款强大的大数据开发治理平台,在
- 基于Django的人脸识别考勤管理系统(源码+LW+部署讲解)
毕业程序员
python计算机毕业设计djangopython后端
收藏关注不迷路文章目录前言一、项目介绍三、功能介绍四、核心代码五、效果图六、文章目录前言随着信息技术的快速发展和人工智能的广泛应用,人脸识别技术因其独特的识别优势和高效的处理能力,逐渐在考勤管理领域展现出巨大的应用潜力。本文首先回顾了人脸识别技术的发展历程,分析了其在考勤系统中的技术原理和实现方式。随后,文章详细介绍了人脸识别考勤系统的设计架构、核心算法及关键技术,包括图像采集、预处理、特征提取和
- LangChain数据代理(Agents)与Function Calling解析
一个头发很多的程序员
langchain实战langchainpython人工智能语言模型prompt
数据代理(Agents):赋予模型行动力的FunctionCalling在LangChain的生态中,数据代理(Agents)是一个关键部分,它将语言模型的能力从“回答问题”拓展为“主动行动”,为自动化和复杂任务处理带来了巨大优势。而这一切的核心就在于FunctionCalling——一种让模型具备轻松调用外部函数或工具的神奇技术。本篇文章将以智能助手的构建为例,深入解析数据代理的原理和实践。Fu
- 大语言模型生成式AI学习笔记——1. 1.1 大语言模型及生成式AI项目生命周期简介——课程简介
预见未来to50
机器学习深度学习(ML/DL)人工智能语言模型学习
GenerativeAIwithLargeLanguageModelsbyDeepLearning.AI&AmazonWebServicesAboutthisCourseInGenerativeAIwithLargeLanguageModels(LLMs),you’lllearnthefundamentalsofhowgenerativeAIworks,andhowtodeployitinreal
- Claude 3.7 Sonnet上线,Anthropic向OpenAI和DeepSeek宣战!
新加坡内哥谈技术
人工智能自然语言处理语言模型深度学习学习
每周跟踪AI热点新闻动向和震撼发展想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行!订阅:https://rengongzhineng.io/Anthropic最新发布的Claude3.7Sonnet正式加入AI智能体大战,不仅对
- 让AI团队来分析股票!一份可以参考的简单研报——基于Python的CrewAI库
Ra1n_Su
ai人工智能python
引言在最近,一个更新的科技概念AIAgent(人工智能助手)引起了人们更为广泛的关注。比尔盖茨称其为“一个对科技行业的冲击波”。OpenAI将AIAgent定义为“以大语言模型为大脑驱动的系统,具备自主理解、感知、规划、记忆和使用工具的能力,能够自动化执行完成复杂任务的系统。”我们可以将其通俗地理解为一个“你提要求就行,任务我来做”的强大工具人。因此,本文要搭建一个扮演分析师角色的AIAgent。
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比