线程-复习笔记

线程

  • 1.概念
    • 1.1 简介
    • 1.2 进程线程区别
    • 1.3 线程之间共享和非共享资源
    • 1.4 nptl线程库(Native POSIX Threads Library)
  • 2. 线程操作函数
  • 3. 线程同步
    • 3.1 简介
    • 3.2 互斥量
    • 3.3 死锁
    • 3.4 读写锁
    • 3.5 生产者消费者模型
    • 3.6 条件变量
    • 3.7 信号量

1.概念

1.1 简介

  • 与进程(process)类似,线程(thread)是允许应用程序并发执行多个任务的一种机制。**一个进程可以包含多个线程。**同一个程序中的所有线程均会独立执行相同程序,且共享同一份全局内存区域,其中包括初始化数据段、未初始化数据段,以及堆内存段。(传统意义上的 UNIX 进程只是多线程程序的一个特例,该进程只包含一个线程)
  • 进程是CPU 分配资源的最小单位,线程是操作系统调度执行的最小单位。
  • 线程是轻量级的进程(LWP:Light Weight Process),在 Linux 环境下线程的本质仍是进程。
  • 查看指定进程的 LWP 号:ps –Lf pid

1.2 进程线程区别

  • 进程间的信息难以共享。由于除去只读代码段外,父子进程并未共享内存,因此必须采用一些进程间通信方式,在进程间进行信息交换。
  • 调用 fork() 来创建进程的代价相对较高,即便利用写时复制技术,仍然需要复制诸如内存页表和文件描述符表之类的多种进程属性,这意味着 fork() 调用在时间上的开销依然不菲。
  • 线程之间能够方便、快速地共享信息。只需将数据复制到共享(全局或堆)变量中即可。
  • 创建线程比创建进程通常要快 10 倍甚至更多。线程间是共享虚拟地址空间的,无需采用写时复制来复制内存,也无需复制页表
    线程-复习笔记_第1张图片

1.3 线程之间共享和非共享资源

共享资源

  • 进程 ID 和父进程 ID
  • 进程组 ID 和会话 ID
  • 用户 ID 和 用户组 ID
  • 文件描述符表
  • 信号处置
  • 文件系统的相关信息:文件权限掩码(umask)、当前工作目录
  • 虚拟地址空间(除栈、.text)

非共享资源

  • 线程 ID
  • 信号掩码
  • 线程特有数据
  • error 变量
  • 实时调度策略和优先级
  • 栈,本地变量和函数的调用链接信息

1.4 nptl线程库(Native POSIX Threads Library)

  当 Linux 最初开发时,在内核中并不能真正支持线程。但是它的确可以通过 clone() 系统调用将进程作为可调度的实体。这个调用创建了调用进程(calling process)的一个拷贝,这个拷贝与调用进程共享相同的地址空间。
  LinuxThreads 项目使用这个调用来完成在用户空间模拟对线程的支持。不幸的是,这种方法有一些缺点,尤其是在信号处理、调度和进程间同步等方面都存在问题。另外,这个线程模型也不符合 POSIX 的要求。
  要改进 LinuxThreads,需要内核的支持,并且重写线程库。有两个相互竞争的项目开始来满足这些要求。一个包括 IBM 的开发人员的团队开展了 NGPT(Next-Generation POSIX Threads)项目。同时,Red Hat 的一些开发人员开展了 NPTL 项目。NGPT 在 2003 年中期被放弃了,把这个领域完全留给了NPTL。
  NPTL,或称为 Native POSIX Thread Library,是 Linux 线程的一个新实现,它克服了 LinuxThreads的缺点,同时也符合 POSIX 的需求。与 LinuxThreads 相比,它在性能和稳定性方面都提供了重大的改进。
查看当前 pthread 库版本:getconfGNU_LIBPTHREAD_VERSION

2. 线程操作函数

int pthread_create(pthread_t *thread, const pthread_attr_t *attr, void *
(*start_routine) (void *), void *arg);
pthread_t pthread_self(void);
int pthread_equal(pthread_t t1, pthread_t t2);
void pthread_exit(void *retval);
int pthread_join(pthread_t thread, void **retval);
int pthread_detach(pthread_t thread);
int pthread_cancel(pthread_t thread);

线程属性相关:

//线程属性类型 pthread_attr_t
int pthread_attr_init(pthread_attr_t *attr);
int pthread_attr_destroy(pthread_attr_t *attr);
int pthread_attr_getdetachstate(const pthread_attr_t *attr, int *detachstate);
int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate);

3. 线程同步

3.1 简介

  线程的主要优势在于,能够通过全局变量来共享信息。不过,这种便捷的共享是有代价的:必须确保多个线程不会同时修改同一变量,或者某一线程不会读取正在由其他线程修改的变量。
  临界区是指访问某一共享资源的代码片段,并且这段代码的执行应为原子操作,也就是同时访问同一共享资源的其他线程不应终端该片段的执行。
  线程同步:即当有一个线程在对内存进行操作时,其他线程都不可以对这个内存地址进行操作,直到该线程完成操作,其他线程才能对该内存地址进行操作,而其他线程则处于等待状态。

3.2 互斥量

  为避免线程更新共享变量时出现问题,可以使用互斥量(mutex 是 mutual exclusion的缩写)来确保同时仅有一个线程可以访问某项共享资源。可以使用互斥量来保证对任意共享资源的原子访问。
  互斥量有两种状态:已锁定(locked)和未锁定(unlocked)。任何时候,至多只有一个线程可以锁定该互斥量。试图对已经锁定的某一互斥量再次加锁,将可能阻塞线程或者报错失败,具体取决于加锁时使用的方法。
  一旦线程锁定互斥量,随即成为该互斥量的所有者,只有所有者才能给互斥量解锁。一般情况下,对每一共享资源(可能由多个相关变量组成)会使用不同的互斥量,每一线程在访问同一资源时将采用如下协议:

  • 针对共享资源锁定互斥量
  • 访问共享资源
  • 对互斥量解锁
      如果多个线程试图执行这一块代码(一个临界区),事实上只有一个线程能够持有该互斥量(其他线程将遭到塞),即同时只有一个线程能够进入这段代码区域,如下图所示:
    线程-复习笔记_第2张图片
    互斥量相关操作函数:
互斥量的类型 pthread_mutex_t
int pthread_mutex_init(pthread_mutex_t *restrict mutex, const
pthread_mutexattr_t *restrict attr);
int pthread_mutex_destroy(pthread_mutex_t *mutex);
int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

3.3 死锁

  有时,一个线程需要同时访问两个或更多不同的共享资源,而每个资源又都由不同的互斥量管理。当超过一个线程加锁同一组互斥量时,就有可能发生死锁。
  两个或两个以上的进程在执行过程中,因争夺共享资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁。
死锁的几种场景:

  • 忘记释放锁
  • 重复加锁
  • 多线程多锁,抢占锁资源

线程-复习笔记_第3张图片

3.4 读写锁

当有一个线程已经持有互斥锁时,互斥锁将所有试图进入临界区的线程都阻塞住。但是考虑一种情形,当前持有互斥锁的线程只是要读访问共享资源,而同时有其它几个线程也想读取这个共享资源,但是由于互斥锁的排它性,所有其它线程都无法获取锁,也就无法读访问共享资源了,但是实际上多个线程同时读访问共享资源并不会导致问题。
在对数据的读写操作中,更多的是读操作,写操作较少,例如对数据库数据的读写应用。为了满足当前能够允许多个读出,但只允许一个写入的需求,线程提供了读写锁来实现。
读写锁的特点:

  • 如果有其它线程读数据,则允许其它线程执行读操作,但不允许写操作
  • 如果有其它线程写数据,则其它线程都不允许读、写操作。
  • 写是独占的,写的优先级高。

读写锁相关函数:

读写锁的类型 pthread_rwlock_t
int pthread_rwlock_init(pthread_rwlock_t *restrict rwlock, const
pthread_rwlockattr_t *restrict attr);
int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);
int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);

3.5 生产者消费者模型

线程-复习笔记_第4张图片

3.6 条件变量

条件变量的类型 pthread_cond_t
int pthread_cond_init(pthread_cond_t *restrict cond, const pthread_condattr_t
*restrict attr);
int pthread_cond_destroy(pthread_cond_t *cond);
int pthread_cond_wait(pthread_cond_t *restrict cond, pthread_mutex_t *restrict
mutex);
int pthread_cond_timedwait(pthread_cond_t *restrict cond, pthread_mutex_t
*restrict mutex, const struct timespec *restrict abstime);
int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond);

3.7 信号量

信号量的类型 sem_t
int sem_init(sem_t *sem, int pshared, unsigned int value);
int sem_destroy(sem_t *sem);
int sem_wait(sem_t *sem);
int sem_trywait(sem_t *sem);
int sem_timedwait(sem_t *sem, const struct timespec *abs_timeout);
int sem_post(sem_t *sem);
int sem_getvalue(sem_t *sem, int *sval);

你可能感兴趣的:(操作系统,linux,c++)