<2022-01-23 周日>
ImageMagick
的ResizeHorizontalFilter
核函数添加了注释ResizeHorizontalFilter
这个函数是做什么的?为什么要分析它?
ImageMagick
中,缩放函数ResizeImage
是用于图片的高质量缩放,因为侧重于缩放质量,所以ResizeImage
的耗时必定很高,所以在启用了OpenCL
的情况下,就有了一个OpenCL
版的ResizeImage
,即AccelerateResizeImage
。ResizeImage
缩放时会调用两个函数,分别处理垂直和水平两个方向,即HorizontalFilter
和VerticalFilter
。AccelerateResizeImage
中调用的是resizeHorizontalFilter
和resizeVerticalFilter
这两个函数,它们并不负责缩放任务,它们的主要任务是完成传参,最终调用真正的核函数(kernel
函数),即ResizeHorizontalFilter
和ResizeVerticalFilter
。HorizontalFilter
的流程情况下,再来理解核函数ResizeHorizontalFilter
,就有了对照,可以很快的写出其它普通函数的核函数。ResizeVerticalFilter
和ResizeHorizontalFilter
大同小异,理解了其中一个,另外一个也就理解了。ResizeHorizontalFilter
函数我认真地看了可能有一天时间,涉及的变量太多,由于本人水平有限,不能说理解的完全正确,这里仅供参考。如下:STRINGIFY(
__kernel __attribute__((reqd_work_group_size(256, 1, 1)))
void ResizeHorizontalFilter(const __global CLQuantum *inputImage, const unsigned int number_channels,
const unsigned int inputColumns, const unsigned int inputRows, __global CLQuantum *filteredImage,
const unsigned int filteredColumns, const unsigned int filteredRows, const float xFactor,
const int resizeFilterType, const int resizeWindowType, const __global float *resizeFilterCubicCoefficients,
const float resizeFilterScale, const float resizeFilterSupport, const float resizeFilterWindowSupport,
const float resizeFilterBlur, __local CLQuantum *inputImageCache, const int numCachedPixels,
const unsigned int pixelPerWorkgroup, const unsigned int pixelChunkSize,
__local float4 *outputPixelCache, __local float *densityCache, __local float *gammaCache)
{
// calculate the range of resized image pixels computed by this workgroup
const unsigned int startX = get_group_id(0)*pixelPerWorkgroup;
const unsigned int stopX = MagickMin(startX + pixelPerWorkgroup,filteredColumns);
// 这里的 actualNumPixelToCompute 就是 HorizontalFilter 中最大的循环:
// for (x=0; x < (ssize_t) resize_image->columns; x++)
const unsigned int actualNumPixelToCompute = stopX - startX;
// calculate the range of input image pixels to cache
float scale = MagickMax(1.0f/xFactor+MagickEpsilon ,1.0f);
const float support = MagickMax(scale*resizeFilterSupport,0.5f);
scale = PerceptibleReciprocal(scale);
// 可以认为上面 scale 是计算好的常数
/* 这里对应 HorizontalFilter 中的代码:
bisect=(double) (x+0.5)/x_factor+MagickEpsilon;
start=(ssize_t) MagickMax(bisect-support+0.5,0.0);
stop=(ssize_t) MagickMin(bisect+support+0.5,(double) image->columns);
density=0.0;
contribution=contributions[id];
for (n=0; n < (stop-start); n++)
{
contribution[n].pixel=start+n;
contribution[n].weight=GetResizeFilterWeight(resize_filter,scale*
((double) (start+n)-bisect+0.5));
density+=contribution[n].weight;
}*/
// 为什么 cacheRangeEndX 的计算与上面贴来的代码不一样?因为 numCachedPixels 是
// 通过参数传进来的,在 resizeHorizontalFilter 函数中它是这样得来的:
// numCachedPixels=(int) ceil((pixelPerWorkgroup-1)/xFactor+2*support);
// 因为做了 +2*support 的处理,计算后与上面注释中 stop 值相同
const int cacheRangeStartX = MagickMax((int)((startX+0.5f)/xFactor+MagickEpsilon-support+0.5f),(int)(0));
const int cacheRangeEndX = MagickMin((int)(cacheRangeStartX + numCachedPixels), (int)inputColumns);
// cache the input pixels into local memory
const unsigned int y = get_global_id(1);
const unsigned int pos = getPixelIndex(number_channels, inputColumns, cacheRangeStartX, y);
const unsigned int num_elements = (cacheRangeEndX - cacheRangeStartX) * number_channels;
// 不理解 inputImageCache 这个参数,它是 resizeHorizontalFilter 中的 imageCacheLocalMemorySize
// 这个 size_t 类型的变量,传进这个函数后怎么当成指针来用了?
// inputImage 是在 ComputeResizeImage 函数中调用 GetAuthenticOpenCLBuffer 获得的
// async_work_group_copy 这个函数有两种形式:
// 1)从 __global 拷贝到 __local
// 2)从 __local 拷贝到 __global
// 它的用意应该是将这个 kernel 函数要计算的其中一个 workgroup 拷贝到 local 内存,即 inputImageCache
event_t e = async_work_group_copy(inputImageCache, inputImage + pos, num_elements, 0);
wait_group_events(1, &e);
unsigned int alpha_index = (number_channels == 4) || (number_channels == 2) ? number_channels - 1 : 0;
unsigned int totalNumChunks = (actualNumPixelToCompute+pixelChunkSize-1)/pixelChunkSize;
for (unsigned int chunk = 0; chunk < totalNumChunks; chunk++)
{
const unsigned int chunkStartX = startX + chunk*pixelChunkSize;
const unsigned int chunkStopX = MagickMin(chunkStartX + pixelChunkSize, stopX);
const unsigned int actualNumPixelInThisChunk = chunkStopX - chunkStartX;
// determine which resized pixel computed by this workitem
const unsigned int itemID = get_local_id(0);
const unsigned int numItems = getNumWorkItemsPerPixel(actualNumPixelInThisChunk, get_local_size(0));
const int pixelIndex = pixelToCompute(itemID, actualNumPixelInThisChunk, get_local_size(0));
// 目前的理解是:此 kernel 函数中存在多个 workgroup,一个 workgroup 的计算大小是:(pixelPerWorkgroup, 1)
// 整个 kernel 函数的计算范围是:(actualNumPixelToCompute, 1),见函数最开始处的计算,接着在这个 for 循环
// 中将计算整个 (actualNumPixelToCompute, 1),分割成 totalNumChunks 个 chunk,按照传参 pixelChunkSize
// 计算,每个 chunk 的总计算范围是:(actualNumPixelInThisChunk, 1),这一个 chunk 可以被 numItems 个
// workitem 同时计算,itemID 是通过 get_local_id(0) 获得的,所以 itemID 是用于计算的索引,pixelIndex 是
// itemID 通过 pixelToCompute 计算获得的索引,这两个都是索引,itemID 是在 workitem 中的索引,pixelIndex
// 是整个 chunk 的索引,因此整理得:
// 整个 kernel 函数计算范围:(actualNumPixelToCompute, 1),<--- 这个大小好像不对,从第一,二行代码分析,
// 这应该是整个需要计算图片的大小?从代码上看 pixelPerWorkgroup,下面代码计算未用到这个变量,因此这里忽略
// workgroup 的大小,将 actualNumPixelToCompute 认为是整个图片的需要计算的大小,这里即指图片的宽度,然后
// 以 chunk 的概念来理解:
// 一个 chunk 大小:(actualNumPixelInThisChunk, 1)
// 一个 workitem 大小:(get_local_id(0), 1)
// 从 getNumWorkItemsPerPixel 函数看 workitem 的大小比 chunk 大
float4 filteredPixel = (float4)0.0f;
float density = 0.0f;
float gamma = 0.0f;
// -1 means this workitem doesn't participate in the computation
if (pixelIndex != -1)
{
// x coordinated of the resized pixel computed by this workitem
const int x = chunkStartX + pixelIndex;
// calculate how many steps required for this pixel
const float bisect = (x+0.5)/xFactor+MagickEpsilon;
const unsigned int start = (unsigned int)MagickMax(bisect-support+0.5f,0.0f);
const unsigned int stop = (unsigned int)MagickMin(bisect+support+0.5f,(float)inputColumns);
const unsigned int n = stop - start;
// calculate how many steps this workitem will contribute
unsigned int numStepsPerWorkItem = n / numItems;
numStepsPerWorkItem += ((numItems*numStepsPerWorkItem)==n?0:1);
const unsigned int startStep = (itemID%numItems)*numStepsPerWorkItem;
if (startStep < n)
{
const unsigned int stopStep = MagickMin(startStep+numStepsPerWorkItem, n);
unsigned int cacheIndex = start+startStep-cacheRangeStartX;
for (unsigned int i = startStep; i < stopStep; i++, cacheIndex++)
{
float weight = getResizeFilterWeight(resizeFilterCubicCoefficients,
(ResizeWeightingFunctionType) resizeFilterType,
(ResizeWeightingFunctionType) resizeWindowType,
resizeFilterScale, resizeFilterWindowSupport,
resizeFilterBlur, scale*(start + i - bisect + 0.5));
float4 cp = (float4)0.0f;
__local CLQuantum *p = inputImageCache + (cacheIndex*number_channels);
cp.x = (float) *(p);
if (number_channels > 2)
{
cp.y = (float) *(p + 1);
cp.z = (float) *(p + 2);
}
if (alpha_index != 0)
{
cp.w = (float) *(p + alpha_index);
float alpha = weight * QuantumScale * cp.w;
filteredPixel.x += alpha * cp.x;
filteredPixel.y += alpha * cp.y;
filteredPixel.z += alpha * cp.z;
filteredPixel.w += weight * cp.w;
gamma += alpha;
}
else
filteredPixel += ((float4) weight)*cp;
density += weight;
}
}
}
// initialize the accumulators to zero
if (itemID < actualNumPixelInThisChunk) {
outputPixelCache[itemID] = (float4)0.0f;
densityCache[itemID] = 0.0f;
if (alpha_index != 0)
gammaCache[itemID] = 0.0f;
}
barrier(CLK_LOCAL_MEM_FENCE);
// accumulatte the filtered pixel value and the density
for (unsigned int i = 0; i < numItems; i++) {
if (pixelIndex != -1) {
if (itemID%numItems == i) {
outputPixelCache[pixelIndex]+=filteredPixel;
densityCache[pixelIndex]+=density;
if (alpha_index != 0)
gammaCache[pixelIndex]+=gamma;
}
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if (itemID < actualNumPixelInThisChunk)
{
float4 filteredPixel = outputPixelCache[itemID];
float gamma = 0.0f;
if (alpha_index != 0)
gamma = gammaCache[itemID];
float density = densityCache[itemID];
if ((density != 0.0f) && (density != 1.0f))
{
density = PerceptibleReciprocal(density);
filteredPixel *= (float4) density;
if (alpha_index != 0)
gamma *= density;
}
if (alpha_index != 0)
{
gamma = PerceptibleReciprocal(gamma);
filteredPixel.x *= gamma;
filteredPixel.y *= gamma;
filteredPixel.z *= gamma;
}
WriteAllChannels(filteredImage, number_channels, filteredColumns, chunkStartX + itemID, y, filteredPixel);
}
}
}
)