- R语言环境下载和RStudio安装教程
CyberXZ
r语言开发语言R语言
R语言环境下载和RStudio安装教程R语言是一种广泛应用于统计计算和数据分析的编程语言。它提供了丰富的统计和图形功能,被广泛用于数据科学、机器学习和数据可视化等领域。本教程将向您介绍如何下载和安装R语言环境以及RStudio集成开发环境。步骤1:下载R语言环境首先,您需要下载R语言环境。请按照以下步骤进行操作:在您的Web浏览器中打开R官方网站(https://www.r-project.org
- Solidity/Rust 实战 —— Web3 开发者免费训练营(第 21 期)
HackQuest第21期Solidity/Rust共学营即将开营!Solidity/Rust共学营信息清单7月23日-8月1日免费(成功结营的小伙伴还将获得专属周边)全程线上(会议具体时间入营后通知)️头部公链官方签发的学习证书主办社区:HackQuestHackQuest是一个充满活力的Web3开发者教育社区,我们的目标是培养下一代Web3开发者。目前,HackQuest组织的共学营已达20期
- Move on Sui 实战 —— Web3 开发者免费训练营「第22期」
程序员区块链
HackQuest第22期MoveonSui共学营即将开营!MoveonSui共学营信息清单7月31日-8月8日免费(成功结营的小伙伴还将获得Sui基金会提供的奖金)全程线上(会议具体时间入营后通知)️头部公链官方签发的学习证书关于HackQuestHackQuest是一个充满活力的Web3开发者教育社区,我们的目标是培养下一代Web3开发者。目前我们的产品仍处于内测阶段,我们计划招募小伙伴们一起
- 机器学习--学习计划
kyle~
机器学习机器学习学习人工智能
3周机器学习速成计划基于「28原则」,聚焦机器学习20%的核心概念,覆盖80%的常见应用场景。计划分为理论学习+项目实战,每周学习后通过5个递进项目巩固知识。第1周:数据与监督学习基础学习目标:掌握数据预处理、线性模型与分类任务的基础流程。核心概念(20%关键内容):数据预处理缺失值处理(均值填充、删除)特征缩放(标准化、归一化)分类变量编码(独热编码、标签编码)监督学习基础线性回归(原理、损失函
- 机器学习--概览
kyle~
机器学习机器学习人工智能
一、机器学习基础概念1.定义机器学习(MachineLearning,ML):通过算法让计算机从数据中自动学习规律,并利用学习到的模型进行预测或决策,而无需显式编程。2.与编程的区别传统编程机器学习输入:规则+数据→输出:结果输入:数据+结果→输出:规则需要人工编写逻辑自动发现数据中的模式3.核心要素数据:模型学习的原材料(结构化/非结构化)特征(Feature):数据的可量化属性(如房价预测中的
- 机器学习笔记20241017
tt555555555555
学习笔记深度学习机器学习笔记人工智能
文章目录torchvisiondataloadernn.module卷积非线性激活模型选择训练误差泛化误差正则化权重衰退的基本概念数学表示权重衰退的效果物理解释数值稳定性(GradientVanishing)梯度消失原因解决方法梯度爆炸(GradientExplosion)定义原因解决方法总结继续跟着小土堆学pytorchtorchvision#导入torchvision库,主要用于处理图像数据集
- 基于机器学习中集成学习的stacking方式进行的金线莲质量鉴别研究(python进行数据处理并完成建模,对品种进行预测)
Life is a joke
PYTHON人工智能机器学习机器学习集成学习人工智能
1.前言金线莲为兰科开唇兰属植物,别名金丝兰、金丝线、金耳环、乌人参、金钱草等,是一种名贵中药材,国内主要产地为较低纬度地区如:福建、台湾、广东、广西、浙江、江西、海南、云南、四川、贵州以及西藏南部[1],被当地人民誉为“药中之王”,福建品种和台湾品种更是其中的上等品种,在治疗肺部炎症、糖尿病、癌症、肾炎、膀胱炎、重症肌无力、风湿性及类风湿性关节炎、高血脂、毒蛇咬伤有着很大的作用[2-3]。由于野
- 基于BiGRU的预测模型及其Python和MATLAB实现
追蜻蜓追累了
机器学习深度学习cnnlstm神经网络gru回归算法
##一、背景在当今快速发展的数据驱动的时代,尤其是在自然语言处理(NLP)、时间序列预测、语音识别等任务中,深度学习技术的应用已经变得越来越普遍。传统的机器学习算法往往无法很好地捕捉数据中的时序信息和上下文关系,因此深度学习中的循环神经网络(RNN)逐渐成为解决这一问题的重要工具。RNN能够处理序列数据,但它们在长序列数据的学习中存在梯度消失和梯度爆炸的问题。为了解决这些问题,长短期记忆网络(LS
- 随机森林(Random Forest)预测模型及其特征分析(Python和MATLAB实现)
追蜻蜓追累了
深度学习机器学习python随机森林大数据回归算法算法
##一、背景在大数据和机器学习的快速发展时代,数据的处理和分析变得尤为重要。随着多个领域积累了海量数据,传统的统计分析方法常常无法满足复杂问题的需求。在这种背景下,机器学习方法开始广泛应用。随机森林(RandomForest)作为一种强大的集成学习方法,因其高效性和较强的泛化能力而备受关注。随机森林最初由LeoBreiman在2001年提出,基于决策树这一基本分类模型。其基本思想是通过构建多个决策
- Java系统线上生产问题排查一把梭
2401_89693697
java开发语言
还有测试环境是允许造数据来模拟我们需要的场景的哦,因此这时遇到问题记得主动沟通测试人员造数据让bug更容易复现。1.3Prd该环境下开发人员的权限最低,所以排查问题时障碍很大:无法使用调试工具从远程附加进程快速恢复为先,即使在结婚,也得赶紧修复线上问题。而且生产环境流量大、网络权限严格、调用链路复杂,因此更容易出问题,也是出问题最多的环境。2监控==========================
- 机器学习中,准确率(Accuracy)、精确度(Precision)、召回率(Recall)、F1分数(F1Score) 分别是什么?有啥用?有啥意义?有啥缺陷?
shimly123456
NLP相关杂谈机器学习人工智能算法
首先明白四个名词:真正例TruePositive假正例FalsePositive真负例TrueNegative假负例FalseNegativeTP:被预测为真,实际为真的样本FP:被预测为真,实际为假的样本TN:被预测为假,实际为假的样本FN:被预测为假,实际为真的样本准确率(Accuracy)计算公式:(TP+TN)/(TP+FP+TN+FN)意义:被正确预测的样本占总样本的比例缺陷:尽管准确率
- 使用 Conda 管理 Python 环境的详细指南
小桥流水---人工智能
人工智能python安装库ancondacondapython开发语言
使用Conda管理Python环境的详细指南在安装Python时,我们通常会选择Anaconda作为管理工具,因为它不仅提供了Python的安装包,还集成了许多常用的库和工具,非常适合数据科学和机器学习的工作。Conda是Anaconda中的一个包和环境管理工具,通过使用Conda命令,我们可以方便地创建、管理和切换不同的Python环境。下面是一些常用的Conda命令,详细介绍如何使用这些命令来
- 动手学PyTorch建模与应用:从深度学习到大模型
王国平
pytorch人工智能数据分析python数据挖掘
在人工智能时代,机器学习技术日新月异,深度学习是机器学习领域中一个全新的研究方向和应用热点,它是机器学习的一种,也是实现人工智能的必由之路。深度学习的出现不仅推动了机器学习的发展,而且促进了人工智能技术的革新,已经被成功应用在语音识别、图像分类识别、地球物理、大语言模型等领域,具有巨大的发展潜力和价值。本书是一本带领读者快速学习PyTorch并将其运用于深度学习建模方向的入门指南,重点介绍了基于P
- Web3 黑客松组队报名 — 30000 美金奖池,需要前后端,设计,产品,合约工程师
web3
MantleAPACHackathon基本信息ℹ️项目提交截至12月15日30,000美金奖池三大赛道:DeFi、Infra&AI、Gaming&Meme需要前端,后端,设计,产品,合约工程师黑客松要求✍️本次黑客松由MantleFoundation联合Hackguest和OpenBuild共同打造,面向亚太地区开发者和区块链爱好者的线上黑客马拉松不限制主题部署在Mantle测试网上谁适合参加UI
- 直击 Solana Radar 黑客松:Solana Founders Fellowship
web3区块链区块链开发
HackQuest与Solana官方中文社区Solar联合主办的SolanaFellowshipProgram即将启程!!简约说明9/20-10/12线上&大理HackerHouse10+导师指导8+核心课程模块:(每周2-3个)与SolanaFoundation官方及生态一线项目创始人交流黑客松1:1指导SolanaGrant机会报名链接:https://xsxo494365r.typeform
- Solidity/Rust 实战 —— Web3 开发者免费训练营(第17期)
智能合约区块链以太坊比特币
HackQuest第17期Solidity/Rust共学营即将开营!Solidity/Rust共学营信息清单6月18日-6月27日免费(成功结营的小伙伴还将获得专属周边)全程线上(会议具体时间入营后通知)️头部公链官方签发的学习证书关于HackQuestHackQuest是一个充满活力的Web3开发者教育社区,我们的目标是培养下一代Web3开发者。目前我们的产品仍处于内测阶段,我们计划招募小伙伴们
- 机器学习笔记——正则化
好评笔记
补档机器学习人工智能论文阅读AIGC计算机视觉深度学习面试
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本笔记介绍机器学习中常见的正则化方法。文章目录正则化L1正则化(Lasso)原理使用场景优缺点L2正则化(Ridge)原理使用场景优缺点ElasticNet正则化定义公式优点缺点应用场景Dropout原理使用场景优缺点早停法(EarlyStopping)原理使用场景优缺点BatchNormalization(BN)原理使用
- 机器学习笔记——特征工程、正则化、强化学习
好评笔记
机器学习笔记机器学习人工智能AIAI编程算法工程师
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本笔记介绍机器学习中常见的特征工程方法、正则化方法和简要介绍强化学习。文章目录特征工程(FzeatureEngineering)1.特征提取(FeatureExtraction)手工特征提取(ManualFeatureExtraction):自动特征提取(AutomatedFeatureExtraction):2.特征选择
- 【机器学习BDT】python代码实现(下)
mcoc132
Python机器学习机器学习python人工智能
文章目录BDT(BootstrapDecisionTree)python实现导入库分类树主体代码回归树主体代码输出函数完整代码后续可能添加的功能BDT(BootstrapDecisionTree)python实现代码仅供参考导入库importCART树_自己写importnumpy其中一个库之前写的分类树主体代码在原始数据权重基础上使用更新的数据权重以更新BDT模型.def分类树(self,BDT
- Qwen2.5-Max
百态老人
笔记大数据人工智能
Qwen2.5-Max是阿里巴巴于2024年1月29日发布的一款旗舰级人工智能模型,基于混合专家(MoE)架构开发,拥有超过20万亿tokens的超大规模预训练数据。这一模型在多项权威基准测试中展现了卓越的性能,超越了包括DeepSeekV3、GPT-4和Claude-3.5-Sonnet在内的多款国际顶尖AI模型,标志着中国AI技术在高性能、低成本路线上的重大突破。技术特点与优势超大规模预训练数
- Python机器学习实战:主成分分析(PCA)的原理和实战操作
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python机器学习实战:主成分分析(PCA)的原理和实战操作1.背景介绍1.1什么是主成分分析(PCA)?主成分分析(PrincipalComponentAnalysis,PCA)是一种常用的无监督学习算法,用于数据降维和特征提取。它通过线性变换将原始高维数据映射到低维空间,同时保留数据的主要特征和信息。PCA的目标是找到数据中最主要的方向(主成分),沿着这些方向对数据进行投影,从而实现降维。1
- 代码随想录算法训练营Day51 | 101.孤岛的总面积、102.沉没孤岛、103.水流问题、104.建造最大岛屿
Harryline-lx
代码随想录算法深度优先
文章目录101.孤岛的总面积思路与重点102.沉没孤岛思路与重点103.水流问题思路与重点104.建造最大岛屿思路与重点101.孤岛的总面积题目链接:101.孤岛的总面积讲解链接:代码随想录状态:直接看题解了。思路与重点nextx或者nexty越界了则说明当前的x或y处于边界处,所以当前的岛不是孤岛,不能记入总面积。#include#includeusingnamespacestd;intdir[
- 深度学习盛行,还记得哪些传统机器学习方法和模型?
硬件学长森哥
人工智能深度学习机器学习人工智能
开头森哥说:假期前后在准备成像技术的总结,目前已完成两部分,争取在摸索出一些编辑和运营技巧后,完善成一个系列和大家见面;当然也有可能会通过一些更加贴合摄影实用的角度出一些更加浅显的内容。最终如何呈现还需要慢慢摸索。传统机器学习是指在深度学习盛行之前开发的机器学习和人工智能技术。这些传统方法通常依赖于手工设计的特征提取和模型结构。而深度学习是一种机器学习技术,它通过深层神经网络从原始数据中学习特征表
- 1、PyTorch 简介
找个栗子
PyTorch开始到scipytorch人工智能python
PyTorch是什么?首先,我们讲PyTorch,我们先讲它的前身--torch。1、torchTorch是PyTorch的前身,Torch是一个有着悠久历史的机器学习框架,最初由RonanCollobert、SoumithChintala和KorayKavukcuoglu等人开发。Torch是以Lua语言为基础,在2002年左右就开始逐渐发展起来,在计算机视觉、自然语言处理等领域有一定的应用。o
- 机器学习—大语言模型:推动AI新时代的引擎
云边有个稻草人
人工智能机器学习语言模型
云边有个稻草人-CSDN博客目录引言一、大语言模型的基本原理1.什么是大语言模型?2.Transformer架构3.模型训练二、大语言模型的应用场景1.文本生成2.问答系统3.编码助手4.多语言翻译三、大语言模型的最新进展1.GPT-42.开源模型四、构建和部署一个简单的大语言模型1.数据准备2.模型训练3.部署模型五、大语言模型的未来发展结语引言大语言模型(LargeLanguageModels
- 基于Java的智能家居设计:探讨Java在智能家居大数据处理中的角色
杭州大厂Java程序媛
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
基于Java的智能家居设计:探讨Java在智能家居大数据处理中的角色关键词:智能家居,Java,大数据处理,机器学习,物联网1.背景介绍1.1问题由来随着物联网技术的发展,智能家居已经从一个概念转变为现实。通过连接各种家庭设备,智能家居系统能够实现自动化控制、远程监控、个性化服务等功能。然而,这些功能背后隐藏着一个庞大的数据处理和管理系统,即大数据处理系统。这些系统需要高效、可靠的计算平台,而Ja
- 模式识别与机器学习(Python实现):基于sklearn朴素贝叶斯模型实现男女分类
CV视界
模式识别机器学习与图像处理机器学习python人工智能
模式识别与机器学习(Python实现):基于sklearn朴素贝叶斯模型和pazen窗方法实现男女分类欢迎大家来到安静到无声的《模式识别与人工智能(程序与算法)》,如果对所写内容感兴趣请看模式识别与人工智能(程序与算法)系列讲解-总目录,同时这也可以作为大家学习的参考。欢迎订阅,优惠价只需9.9元,请多多支持!目录标题模式识别与机器学习(Python实现):基于sklearn朴素贝叶斯模型和paz
- 县域智慧城市(城市大脑)建设方案
百态老人
智慧城市人工智能
第一部分智慧城市(城市大脑)建设方案以下是关于智慧城市(城市大脑)建设方案的框架设计,涵盖目标、架构、关键技术、实施路径及典型案例,旨在为城市数字化转型提供系统性参考。一、建设目标核心愿景构建城市级智能中枢,实现数据驱动的城市治理、民生服务与产业升级协同发展。提升城市运行效率(交通、能源、应急响应等优化20%-30%)、市民满意度(公共服务线上化率超90%)及可持续发展能力。核心能力感知层:全域物
- Apache Iceberg数据湖技术在海量实时数据处理、实时特征工程和模型训练的应用技术方案和具体实施步骤及代码
weixin_30777913
音视频语言模型大数据人工智能
ApacheIceberg在处理海量实时数据、支持实时特征工程和模型训练方面的强大能力。Iceberg支持实时特征工程和模型训练,特别适用于需要处理海量实时数据的机器学习工作流。Iceberg作为数据湖,以支持其机器学习平台中的特征存储。Iceberg的分层结构、快照机制、并发读写能力以及模式演进等特性,使得它能够高效地处理海量数据,并且保证数据的一致性和可用性。特别是在特征工程和模型训练方面,I
- 投票法:简单而强大的分类利器
ningaiiii
机器学习与深度学习分类机器学习人工智能
投票法:简单而强大的分类利器在机器学习的分类任务中,我们常常需要寻找高效且准确的方法来对数据进行分类。今天,让我们一起来探讨一种简单却极为强大的分类方法——投票法。一、投票法原理(一)通俗易懂的理解投票法就像一场班级选举。假设有一个班级要选出最受欢迎的水果,每个同学心中都有自己的选择(这就好比一个个分类器给出的分类结果)。最后统计每个水果获得的票数,得票最多的水果就当选(对应分类任务中,票数最多的
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite