- 具身智能行业
[shenhonglei]
具身觉醒:智能进化的未来之路人工智能机器人
具身智能行业综合分析资源下载-具身智能导图.xmind资源下载-具身智能导图.xmind一、行业概况定义与核心特征具身智能(EmbodiedAI)指通过物理实体(如机器人、自动驾驶设备等)与环境的动态交互,实现感知、认知和行动控制的智能系统。其核心特征是“知行合一”,强调通过实际交互提升智能水平,而非仅依赖数据训练。技术融合:结合人工智能(AI)、机器人技术、多模态大模型
- 【AGI】DeepSeek开源周:The whale is making waves!
LeeZhao@
AIGC重塑生活神器agi开源人工智能AIGC生活语言模型
DeepSeek开源周:Thewhaleismakingwaves!思维火花引言一、DeepSeek模型体系的技术演进1.通用语言模型:DeepSeek-V3系列2.推理优化模型:DeepSeek-R1系列3.多模态模型:Janus系列二、开源周三大工具库的技术解析1.FlashMLA:解码效率的极限突破(2025.02.24)2.DeepEP:MoE通信范式的重构(2025.02.25)3.De
- 【AGI】中国大模型扛把子:通义家族
LeeZhao@
AIGC重塑生活神器agi人工智能AIGC面试自然语言处理语言模型
中国大模型扛把子:通义家族引言一、通义千问的技术架构与模型谱系二、技术突破与性能优势三、开源生态与行业影响四、未来展望:从“千问时代”到通用智能五、通义家族大模型列表(1)多模态大模型(2)大语言模型结语引言在人工智能大模型领域,中国科技企业正以惊人的速度突破技术边界。阿里云推出的**通义千问(Qwen)**系列大模型,凭借其多层次的技术架构、多样化的模型生态及开源战略,已成为全球AI领域的重要标
- Bert学习笔记
缓释多巴胺。
大模型相关知识语言模型bert
一、Bert架构BERT使用了双向的TransformerGPT使用从左到右的单向信息ELMo把单独训练的从左到右及从右到左的LSTM模型进行合并二、Bert预训练任务2.1遮蔽语言模型MLM任务:随机屏蔽(masking)部分输入token,然后只预测那些被屏蔽的token。问题:预训练任务与微调任务不一致原因:在finetuning期间从未看到[MASK]token,预训练和finetunin
- 大语言模型对程序员行业的影响及未来发展走势分析
Hello kele
人工智能java人工智能AI编程
随着人工智能技术的快速发展,特别是大语言模型(如DeepSeek、OpenAI、Grok等)的出现,对程序员这个行业产生了深远的影响。在这篇文章中,我们将探讨这些变化,分析影响,并展望未来的发展趋势。一、当前影响1.自动化代码生成大语言模型的一个直接影响是代码自动化的能力。这些模型可以理解代码上下文,并生成功能性代码。例如,GitHubCopilot已经成为许多开发者的辅助工具,能够根据注释或部分
- DeepSeek:AI赋能的无限可能——从日常生活到职业进阶的全场景探索
Hello kele
人工智能人工智能
引言在人工智能技术飞速发展的今天,DeepSeek作为一款国产AI工具,凭借其强大的推理能力、自然语言处理效率和场景化应用潜力,正在重塑人类解决问题的方式。从撰写演讲稿到制定投资策略,从家庭教育到企业管理,DeepSeek通过“自然语言对话”的交互模式,将复杂任务简化为几步提示词的输入,真正实现了“所想即所得”。本文将从七大核心场景出发,系统解析DeepSeek如何成为个人与组织的智能助手,推动效
- RAG 检索增强生成:技术详解与应用展望
君君学姐
RAG检索增强生成
RAG检索增强生成:技术详解与应用展望一、引言随着人工智能技术的飞速发展,自然语言处理(NLP)领域迎来了前所未有的变革。其中,检索增强生成(Retrieval-AugmentedGeneration,简称RAG)作为一种新兴的技术框架,正逐渐成为大模型应用中的热门选择。RAG通过结合信息检索(IR)和自然语言生成(NLG)的能力,旨在提升模型在回答问题、生成文本等任务中的准确性和可靠性。本文将深
- 人工智能开发趋势
光影少年
人工智能
人工智能开发趋势:未来技术的演进与创新引言人工智能(AI)正在以惊人的速度发展,并在各行各业中发挥越来越重要的作用。从自然语言处理到计算机视觉,从自动化决策到自主学习,AI的发展方向正变得更加智能化、自动化和人性化。本文将探讨当前AI开发的最新趋势,并展望未来的发展方向。1.生成式AI的崛起近年来,生成式AI(如ChatGPT、StableDiffusion、DALL·E)展现出强大的内容创作能力
- LLM辅助编程:代码自动生成与优化
AI智能涌现深度研究
计算机软件编程原理与应用实践DeepSeekR1&大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能
LLM,代码生成,代码优化,编程辅助,AI编程,自然语言处理,深度学习1.背景介绍随着软件开发的日益复杂化,程序员面临着越来越高的开发压力和效率要求。传统的编程方式依赖于手动编写代码,这不仅耗时费力,而且容易出现错误。近年来,随着深度学习技术的快速发展,基于大型语言模型(LLM)的代码生成和优化技术逐渐成为软件开发领域的新兴热点。LLM是一种强大的人工智能模型,能够理解和生成人类语言。通过训练大量
- Oumi :AI开发的未来?
人工智能开源
Oumi:AI开发的未来?前言在人工智能领域,开源技术正以前所未有的速度推动着创新和变革。今天,我们将聚焦一个备受瞩目的开源AI平台——Oumi。它不仅以其强大的功能和灵活的架构吸引了全球开发者和企业的目光,还通过简化AI开发的整个生命周期,为用户提供了前所未有的便利。github地址:https://github.com/oumi-ai/oumi官网地址:https://oumi.ai/什么是O
- 关于采用源始经为底层框架开发中文编程系统的可能性
太翌修仙笔录
deepseek超算法认知架构第三代人工智能算法人工智能
用中文写代码和Python哪个有前景在编程语言选择方面,**Python的发展前景明显优于中文编程语言**。以下是具体分析:---###一、核心结论**优先选择Python**,因为:1.**全球通用性**:Python是国际主流编程语言,适用于跨国协作和开源项目2.**就业市场需求**:Python在人工智能/大数据/Web开发等领域的岗位需求持续增长3.**技术生态优势**:拥有超过30万个第
- 只需几步!在本地电脑轻松部署DeepSeek大模型
魔法小匠
AI大模型AI大模型DeepSeekOllama大模型部署大模型API
使用Ollama进行本地部署AI大模型一、Ollama简介Ollama是一个开源的本地大语言模型运行框架,支持在Windows、Linux和macOS上本地运行大语言模型。它提供了丰富的模型库,包括Qwen、Llama等1700+大语言模型,并支持用户上传自己的模型。Ollama还允许用户通过编写Modelfile配置文件来自定义模型的推理参数,支持多GPU并行推理加速。二、安装Ollama(一)
- 【免费收藏】清华大学DeepSeek使用手册合集 600页完整版
周师姐
AI写作学习人工智能pdf
DeepSeek资料链接:https://pan.quark.cn/s/c927326f70c5在人工智能席卷全球的当下,DeepSeek作为前沿深度学习技术,正推动着全面AI时代的到来。今日,特别为大家推荐《DeepSeek:从入门到精通》,本书由清华大学新闻与传播学院新媒体研究中心元宇宙文化实验室的余梦珑博士后团队精心编写。它深度解析DeepSeek的技术核心,详尽阐释其应用场景与操作方法,尤
- CES Asia 2025:科技盛宴助力中国数字经济腾飞
CES_Asia
科技机器人人工智能智能音箱智能电视
备受瞩目的CESAsia2025第七届亚洲消费电子技术贸易展(赛逸展)将在首都北京盛大开幕。本届展会以“科技新视界,创新赢未来”为主题,聚焦人工智能、5G、物联网、元宇宙等前沿科技领域,集中展示全球消费电子行业的最新创新成果,为行业发展注入新动能。政策东风助力,CESAsia2025亮点纷呈近年来,中国高度重视数字经济发展,出台了一系列政策措施,为消费电子产业创造了良好的发展环境。CESAsia2
- ChatGLM3-6B:技术架构、核心原理、微调操作与场景应用详解
zhangjiaofa
DeepSeekR1&AI人工智能大模型ChatGLM
ChatGLM3-6B:技术架构、核心原理、微调操作与场景应用详解引言ChatGLM3-6B是ChatGLM系列的最新开源模型,继承了前两代模型的优秀特性,如对话流畅、部署门槛低等,并在多个方面进行了显著提升。本文将深入探讨ChatGLM3-6B的技术架构、核心原理、微调操作以及场景应用,帮助读者全面了解这一强大的语言模型。技术架构基础模型ChatGLM3-6B的基础模型ChatGLM3-6B-B
- 【大模型技术】LlamaFactory 的原理解析与应用
大数据追光猿
大模型transformer人工智能语言模型pythongithubdocker机器学习
LlamaFactory是一个基于LLaMA系列模型(如LLaMA、LLaMA2、Vicuna等)的开源框架,旨在帮助开发者和研究人员快速实现大语言模型(LLM,LargeLanguageModel)的微调、推理和部署。它提供了一套完整的工具链,支持从数据准备到模型训练、优化和应用的全流程开发。以下是关于LlamaFactory的解析:1.LlamaFactory的核心功能(1)模型微调支持多种微
- 【大模型基础_毛玉仁】0.系列文章
XiaoJ1234567
大模型基础_毛玉仁大语言模型基础语言模型大模型基础_毛玉仁
更多内容:XiaoJ的知识星球系列文章【大模型基础_毛玉仁】系列文章参考本系列文章,是对浙江大学毛玉仁、高云君等人著作的《大模型基础》的阅读笔记。原书涵盖传统语言模型、大语言模型架构、提示工程、参数高效微调、模型编辑和检索增强生成等几大模块。原书参考链接及目录如下:《大模型基础》Github:https://github.com/ZJU-LLMs/Foundations-of-LLMs《大模型基础
- 开源模型应用落地-qwen2-7b-instruct-LoRA微调-LLaMA-Factory-单机多卡-RTX 4090双卡(五)
开源技术探险家
开源模型-实际应用落地#开源模型-微调实战密码自然语言处理深度学习语言模型
一、前言本篇文章将使用LLaMA-Factory去高效微调QWen2系列模型,通过阅读本文,您将能够更好地掌握这些关键技术,理解其中的关键技术要点,并应用于自己的项目中。二、术语介绍2.1.LoRA微调LoRA(Low-RankAdaptation)用于微调大型语言模型(LLM)。是一种有效的自适应策略,它不会引入额外的推理延迟,并在保持模型质量的同时显着减少下游任务的可训练参数数量。2.2.参数
- 芯科科技通过全新并发多协议SoC重新定义智能家居连接
电子科技圈
SiliconLabs智能家居边缘计算mcu物联网iot人工智能机器学习
MG26系列SoC现已全面供货,为开发人员提供最高性能和人工智能/机器学习功能致力于以安全、智能无线连接技术,建立更互联世界的全球领导厂商SiliconLabs(亦称“芯科科技”,NASDAQ:SLAB),日前宣布其MG26系列无线片上系统(SoC)现已通过芯科科技及其分销合作伙伴全面供货。作为业界迄今为止最先进、高性能的Matter和并发多协议解决方案,MG26SoC的闪存和RAM容量是芯科科技
- 揭秘AWS GPU实例:以极致AI算力与成本优化,重塑企业智能竞争力
AWS官方合作商
人工智能aws云计算gpu算力
在AI模型规模指数级增长的今天,算力已成为企业创新的胜负手。面对动辄千亿参数的LLM大模型训练、实时高并发的AI推理场景,如何兼顾超强算力与极致成本?本文将深度解析AWSGPU实例的颠覆性技术方案,带您解锁AI时代的核心生产力。一、AWSGPU实例:为AI而生的算力引擎1.1硬件级加速:定义行业标杆NVIDIA顶级芯片阵容:搭载A100/V100TensorCoreGPU(P4/P3实例)、最新H
- 【大模型系列篇】Vanna-ai基于检索增强(RAG)的sql生成框架
木亦汐丫
大模型语言模型sqlagiai数据库人工智能embedding
简介Vanna是基于检索增强(RAG)的sql生成框架Vanna使用一种称为LLM(大型语言模型)的生成式人工智能。简而言之,这些模型是在大量数据(包括一堆在线可用的SQL查询)上进行训练的,并通过预测响应提示中最有可能的下一个单词或“标记”来工作。Vanna优化了提示(通过向量数据库使用嵌入搜索)并微调LLM模型以生成更好的SQL。Vanna可以使用和试验许多不同的LLM,以获得最准确的结果。V
- 中国人工智能大赛成果发布会 | 代码安全智能体让研发安全又高效
安全
2024年12月20日,由厦门市人民政府主办,以“融新汇智竞促发展”为主题的第五届中国人工智能大赛成果发布会在厦门成功举办。人工智能安全论坛于成果发布会期间举办,重点聚焦人工智能安全技术专家,共同探讨安全治理的实践经验,探索智能体安全、大模型安全、数据安全、内容安全等方面面临的挑战和解决方案。百度安全技术委员会主席包沉浮受邀出席,分享了智能体技术在代码安全应用上的最新实践经验。百度安全技术委员会主
- 重磅发现!DeepSeek R1方法成功迁移到视觉领域,多模态AI迎来新突破!
zhangjiaofa
DeepSeekR1&AI人工智能大模型人工智能DeepSeekR1多模态
一、引言在当今人工智能飞速发展的时代,多模态AI技术正逐渐成为研究与应用的焦点。近日,一项令人瞩目的成果引发了广泛关注——VLM-R1开源项目成功将DeepSeek的R1方法从纯文本领域迁移至视觉语言领域,为多模态AI的发展开辟了新的道路,极大地拓展了多模态领域的想象空间。本文将深入探讨这一创新性成果,从其灵感来源、验证结果、实际案例、带来的新思路以及开源资源等多个方面进行剖析,带您全面了解这一前
- 《从信息论视角:DataWorks平台下人工智能探寻最优数据编码的深度剖析》
程序猿阿伟
人工智能
在数字化时代,数据如汹涌浪潮般不断涌现,其规模之大、增长速度之快超乎想象。企业和组织每天都要面对海量数据的存储与传输挑战,如何在有限的资源条件下高效处理这些数据,成为亟待解决的关键问题。此时,信息论与人工智能算法为我们开辟了一条新的探索路径,尤其在DataWorks这样强大的大数据平台上,二者的结合蕴含着巨大的潜力。信息论,作为一门研究信息的度量、传输、存储和处理的学科,为理解数据的本质提供了深刻
- 《从信息论视角:DataWorks平台下人工智能探寻最优数据编码的深度剖析》
人工智能深度学习
在数字化时代,数据如汹涌浪潮般不断涌现,其规模之大、增长速度之快超乎想象。企业和组织每天都要面对海量数据的存储与传输挑战,如何在有限的资源条件下高效处理这些数据,成为亟待解决的关键问题。此时,信息论与人工智能算法为我们开辟了一条新的探索路径,尤其在DataWorks这样强大的大数据平台上,二者的结合蕴含着巨大的潜力。信息论,作为一门研究信息的度量、传输、存储和处理的学科,为理解数据的本质提供了深刻
- 「AI」人工智能的发展阶段:ANI、AGI与ASI
何曾参静谧
「AI」人工智能人工智能agi
✨博客主页何曾参静谧的博客(✅关注、点赞、⭐收藏、转发)全部专栏(专栏会有变化,以最新发布为准)「Win」Windows程序设计「IDE」集成开发环境「定制」定制开发集合「C/C++」C/C++程序设计「DSA」数据结构与算法「UG/NX」NX二次开发「QT」QT5程序设计「File」数据文件格式「UG/NX」BlockUI集合「Py」Python程序设计「Math」探秘数学世界「PK」Paras
- 对深度学习中的基本概念—梯度的理解
Humingway
深度学习深度学习人工智能
本文讨论一下对“梯度”的理解。“梯度”是深度学习中基本又非常核心的概念,没有它就没有人工智能的今天。然而,即使抛开令人眼花缭乱的术语(比如sgd、ada、moment、adam)不谈,即使最简单的“梯度”本身,也值得讨论一下。1.提出问题该如何理解梯度?让我们结合具体的例子来体会一下。2.定义例子首先,我们定义一个简单的例子,来模拟一下深度学习的学习过程。已知:有一个正确的数据对(或者叫样本),(
- 网络安全就业形式怎么样?
网络安全Ash
web安全安全
点击文末小卡片,免费获取网络安全全套资料,资料在手,涨薪更快随着人工智能、物联网、5G等技术的普及,网络安全问题变得越来越复杂和多样化,因此企业越来越重视网络安全,政府也出台了相关政策支持网络安全建设,进一步推动了网络安全行业的发展,那么网络安全就业前景如何?这是大家关心的重点,我们来探讨一下。网络安全就业前景可以说是一片光明,是一个不错的行业。没有网络安全就没有国家安全,可想网络安全有多重要。而
- indexify开源程序包、适用于数据密集型生成式 AI 应用的实时服务引擎、提取和索引 PDF 文档、汇总网站、转录和汇总音频文件、对象检测和描述、知识图谱 RAG 和问答
2301_78755287
pdf数据结构算法深度优先逻辑回归宽度优先开源
一、软件介绍文末提供下载Indexify简化了构建和提供持久的多阶段数据密集型工作流的过程,并将其作为HTTPAPI或Python远程API公开。Indexify是开源核心计算引擎,为Tensorlake的无服务器工作流引擎提供支持,用于处理非结构化数据。Indexify是一个多功能的数据处理框架,适用于各种使用案例,包括:提取和索引PDF文档、汇总网站、转录和汇总音频文件、对象检测和描述、知识图
- Mac 基于 Ollama 安装 DeepSeek-R1(蒸馏版本)、AnythingLLM 及使用体验
窝窝和牛牛
人工智能
文章目录Mac基于Ollama安装DeepSeek-R1(蒸馏版本)、AnythingLLM及使用体验Ollama简介下载与安装Ollama下载并运行DeepSeek-R11.在终端运行(建议从8B开始)2.本地模型存储路径3.终端测试4.查询服务状态5.退出服务下载并运行AnythingLLM1.下载与安装2.设置LLM偏好3.数据处理与隐私4.创建工作空间使用体验总结Mac基于Ollama安装
- HQL之投影查询
归来朝歌
HQLHibernate查询语句投影查询
在HQL查询中,常常面临这样一个场景,对于多表查询,是要将一个表的对象查出来还是要只需要每个表中的几个字段,最后放在一起显示?
针对上面的场景,如果需要将一个对象查出来:
HQL语句写“from 对象”即可
Session session = HibernateUtil.openSession();
- Spring整合redis
bylijinnan
redis
pom.xml
<dependencies>
<!-- Spring Data - Redis Library -->
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-redi
- org.hibernate.NonUniqueResultException: query did not return a unique result: 2
0624chenhong
Hibernate
参考:http://blog.csdn.net/qingfeilee/article/details/7052736
org.hibernate.NonUniqueResultException: query did not return a unique result: 2
在项目中出现了org.hiber
- android动画效果
不懂事的小屁孩
android动画
前几天弄alertdialog和popupwindow的时候,用到了android的动画效果,今天专门研究了一下关于android的动画效果,列出来,方便以后使用。
Android 平台提供了两类动画。 一类是Tween动画,就是对场景里的对象不断的进行图像变化来产生动画效果(旋转、平移、放缩和渐变)。
第二类就是 Frame动画,即顺序的播放事先做好的图像,与gif图片原理类似。
- js delete 删除机理以及它的内存泄露问题的解决方案
换个号韩国红果果
JavaScript
delete删除属性时只是解除了属性与对象的绑定,故当属性值为一个对象时,删除时会造成内存泄露 (其实还未删除)
举例:
var person={name:{firstname:'bob'}}
var p=person.name
delete person.name
p.firstname -->'bob'
// 依然可以访问p.firstname,存在内存泄露
- Oracle将零干预分析加入网络即服务计划
蓝儿唯美
oracle
由Oracle通信技术部门主导的演示项目并没有在本月较早前法国南斯举行的行业集团TM论坛大会中获得嘉奖。但是,Oracle通信官员解雇致力于打造一个支持零干预分配和编制功能的网络即服务(NaaS)平台,帮助企业以更灵活和更适合云的方式实现通信服务提供商(CSP)的连接产品。这个Oracle主导的项目属于TM Forum Live!活动上展示的Catalyst计划的19个项目之一。Catalyst计
- spring学习——springmvc(二)
a-john
springMVC
Spring MVC提供了非常方便的文件上传功能。
1,配置Spring支持文件上传:
DispatcherServlet本身并不知道如何处理multipart的表单数据,需要一个multipart解析器把POST请求的multipart数据中抽取出来,这样DispatcherServlet就能将其传递给我们的控制器了。为了在Spring中注册multipart解析器,需要声明一个实现了Mul
- POJ-2828-Buy Tickets
aijuans
ACM_POJ
POJ-2828-Buy Tickets
http://poj.org/problem?id=2828
线段树,逆序插入
#include<iostream>#include<cstdio>#include<cstring>#include<cstdlib>using namespace std;#define N 200010struct
- Java Ant build.xml详解
asia007
build.xml
1,什么是antant是构建工具2,什么是构建概念到处可查到,形象来说,你要把代码从某个地方拿来,编译,再拷贝到某个地方去等等操作,当然不仅与此,但是主要用来干这个3,ant的好处跨平台 --因为ant是使用java实现的,所以它跨平台使用简单--与ant的兄弟make比起来语法清晰--同样是和make相比功能强大--ant能做的事情很多,可能你用了很久,你仍然不知道它能有
- android按钮监听器的四种技术
百合不是茶
androidxml配置监听器实现接口
android开发中经常会用到各种各样的监听器,android监听器的写法与java又有不同的地方;
1,activity中使用内部类实现接口 ,创建内部类实例 使用add方法 与java类似
创建监听器的实例
myLis lis = new myLis();
使用add方法给按钮添加监听器
- 软件架构师不等同于资深程序员
bijian1013
程序员架构师架构设计
本文的作者Armel Nene是ETAPIX Global公司的首席架构师,他居住在伦敦,他参与过的开源项目包括 Apache Lucene,,Apache Nutch, Liferay 和 Pentaho等。
如今很多的公司
- TeamForge Wiki Syntax & CollabNet User Information Center
sunjing
TeamForgeHow doAttachementAnchorWiki Syntax
the CollabNet user information center http://help.collab.net/
How do I create a new Wiki page?
A CollabNet TeamForge project can have any number of Wiki pages. All Wiki pages are linked, and
- 【Redis四】Redis数据类型
bit1129
redis
概述
Redis是一个高性能的数据结构服务器,称之为数据结构服务器的原因是,它提供了丰富的数据类型以满足不同的应用场景,本文对Redis的数据类型以及对这些类型可能的操作进行总结。
Redis常用的数据类型包括string、set、list、hash以及sorted set.Redis本身是K/V系统,这里的数据类型指的是value的类型,而不是key的类型,key的类型只有一种即string
- SSH2整合-附源码
白糖_
eclipsespringtomcatHibernateGoogle
今天用eclipse终于整合出了struts2+hibernate+spring框架。
我创建的是tomcat项目,需要有tomcat插件。导入项目以后,鼠标右键选择属性,然后再找到“tomcat”项,勾选一下“Is a tomcat project”即可。具体方法见源码里的jsp图片,sql也在源码里。
补充1:项目中部分jar包不是最新版的,可能导
- [转]开源项目代码的学习方法
braveCS
学习方法
转自:
http://blog.sina.com.cn/s/blog_693458530100lk5m.html
http://www.cnblogs.com/west-link/archive/2011/06/07/2074466.html
1)阅读features。以此来搞清楚该项目有哪些特性2)思考。想想如果自己来做有这些features的项目该如何构架3)下载并安装d
- 编程之美-子数组的最大和(二维)
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
import java.util.Random;
public class MaxSubArraySum2 {
/**
* 编程之美 子数组之和的最大值(二维)
*/
private static final int ROW = 5;
private stat
- 读书笔记-3
chengxuyuancsdn
jquery笔记resultMap配置ibatis一对多配置
1、resultMap配置
2、ibatis一对多配置
3、jquery笔记
1、resultMap配置
当<select resultMap="topic_data">
<resultMap id="topic_data">必须一一对应。
(1)<resultMap class="tblTopic&q
- [物理与天文]物理学新进展
comsci
如果我们必须获得某种地球上没有的矿石,才能够进行某些能量输出装置的设计和建造,而要获得这种矿石,又必须首先进行深空探测,而要进行深空探测,又必须获得这种能量输出装置,这个矛盾的循环,会导致地球联盟在与宇宙文明建立关系的时候,陷入困境
怎么办呢?
 
- Oracle 11g新特性:Automatic Diagnostic Repository
daizj
oracleADR
Oracle Database 11g的FDI(Fault Diagnosability Infrastructure)是自动化诊断方面的又一增强。
FDI的一个关键组件是自动诊断库(Automatic Diagnostic Repository-ADR)。
在oracle 11g中,alert文件的信息是以xml的文件格式存在的,另外提供了普通文本格式的alert文件。
这两份log文
- 简单排序:选择排序
dieslrae
选择排序
public void selectSort(int[] array){
int select;
for(int i=0;i<array.length;i++){
select = i;
for(int k=i+1;k<array.leng
- C语言学习六指针的经典程序,互换两个数字
dcj3sjt126com
c
示例程序,swap_1和swap_2都是错误的,推理从1开始推到2,2没完成,推到3就完成了
# include <stdio.h>
void swap_1(int, int);
void swap_2(int *, int *);
void swap_3(int *, int *);
int main(void)
{
int a = 3;
int b =
- php 5.4中php-fpm 的重启、终止操作命令
dcj3sjt126com
PHP
php 5.4中php-fpm 的重启、终止操作命令:
查看php运行目录命令:which php/usr/bin/php
查看php-fpm进程数:ps aux | grep -c php-fpm
查看运行内存/usr/bin/php -i|grep mem
重启php-fpm/etc/init.d/php-fpm restart
在phpinfo()输出内容可以看到php
- 线程同步工具类
shuizhaosi888
同步工具类
同步工具类包括信号量(Semaphore)、栅栏(barrier)、闭锁(CountDownLatch)
闭锁(CountDownLatch)
public class RunMain {
public long timeTasks(int nThreads, final Runnable task) throws InterruptedException {
fin
- bleeding edge是什么意思
haojinghua
DI
不止一次,看到很多讲技术的文章里面出现过这个词语。今天终于弄懂了——通过朋友给的浏览软件,上了wiki。
我再一次感到,没有辞典能像WiKi一样,给出这样体贴人心、一清二楚的解释了。为了表达我对WiKi的喜爱,只好在此一一中英对照,给大家上次课。
In computer science, bleeding edge is a term that
- c中实现utf8和gbk的互转
jimmee
ciconvutf8&gbk编码
#include <iconv.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <sys/stat.h>
int code_c
- 大型分布式网站架构设计与实践
lilin530
应用服务器搜索引擎
1.大型网站软件系统的特点?
a.高并发,大流量。
b.高可用。
c.海量数据。
d.用户分布广泛,网络情况复杂。
e.安全环境恶劣。
f.需求快速变更,发布频繁。
g.渐进式发展。
2.大型网站架构演化发展历程?
a.初始阶段的网站架构。
应用程序,数据库,文件等所有的资源都在一台服务器上。
b.应用服务器和数据服务器分离。
c.使用缓存改善网站性能。
d.使用应用
- 在代码中获取Android theme中的attr属性值
OliveExcel
androidtheme
Android的Theme是由各种attr组合而成, 每个attr对应了这个属性的一个引用, 这个引用又可以是各种东西.
在某些情况下, 我们需要获取非自定义的主题下某个属性的内容 (比如拿到系统默认的配色colorAccent), 操作方式举例一则:
int defaultColor = 0xFF000000;
int[] attrsArray = { andorid.r.
- 基于Zookeeper的分布式共享锁
roadrunners
zookeeper分布式共享锁
首先,说说我们的场景,订单服务是做成集群的,当两个以上结点同时收到一个相同订单的创建指令,这时并发就产生了,系统就会重复创建订单。等等......场景。这时,分布式共享锁就闪亮登场了。
共享锁在同一个进程中是很容易实现的,但在跨进程或者在不同Server之间就不好实现了。Zookeeper就很容易实现。具体的实现原理官网和其它网站也有翻译,这里就不在赘述了。
官
- 两个容易被忽略的MySQL知识
tomcat_oracle
mysql
1、varchar(5)可以存储多少个汉字,多少个字母数字? 相信有好多人应该跟我一样,对这个已经很熟悉了,根据经验我们能很快的做出决定,比如说用varchar(200)去存储url等等,但是,即使你用了很多次也很熟悉了,也有可能对上面的问题做出错误的回答。 这个问题我查了好多资料,有的人说是可以存储5个字符,2.5个汉字(每个汉字占用两个字节的话),有的人说这个要区分版本,5.0
- zoj 3827 Information Entropy(水题)
阿尔萨斯
format
题目链接:zoj 3827 Information Entropy
题目大意:三种底,计算和。
解题思路:调用库函数就可以直接算了,不过要注意Pi = 0的时候,不过它题目里居然也讲了。。。limp→0+plogb(p)=0,因为p是logp的高阶。
#include <cstdio>
#include <cstring>
#include <cmath&