- 《算法二》选择排序算法及它的时间复杂度
code 旭
算法选择排序算法算法选择排序时间复杂度
1.选择排序算法选择排序算法的时间复杂度为O(N^2)选择排序算法规则:1.指定位置的数和后面的数比较2.如果指定位置的数大,则两个数交换位置3.向后移动一个位置,和指定位置的数进行比较假设数组大小n,第一轮比较n-1次,最小的数排在了最前面第二轮比较,第一个数已经是最小不用比较,此轮比较n-2次,第二小的排在第二个位置。依次类推,最后一轮,一次比较,最后得出有序的数列1.1和冒泡排序算法相比选择
- K-means 算法核心原理
code 旭
AI人工智能学习算法kmeans机器学习
一、K-means算法核心原理1.算法目标将n个样本划分到k个簇中,使得每个样本到所属簇中心的距离平方和最小。2.数学公式目标函数(SSE,簇内平方误差):J=∑i=1k∑x∈Ci∥x−μi∥2J=\sum_{i=1}^k\sum_{x\inC_i}\|x-\mu_i\|^2J=i=1∑kx∈Ci∑∥x−μi∥2其中:CiC_iCi表示第iii个簇μi\mu_iμi表示第iii个簇的质心二、算法步
- XGBoost常见面试题(五)——模型对比
月亮月亮要去太阳
机器学习经验分享
XGBoost与GBDT的区别机器学习算法中GBDT和XGBOOST的区别有哪些?-知乎基分类器:传统GBDT以CART树作为基分类器,xgboost还支持线性分类器,这个时候xgboost相当于带L1和L2正则化项的逻辑斯蒂回归(分类问题)或者线性回归(回归问题)。导数:传统GBDT在优化时只用到一阶导数信息,xgboost则对代价函数进行了二阶泰勒展开,同时用到了一阶和二阶导数。同时xgboo
- 【算法】BFS(最短路径问题、拓扑排序)
秦jh_
算法算法数据结构c++
个人主页:秦jh_-CSDN博客系列专栏:https://blog.csdn.net/qinjh_/category_12862161.html?fromshare=blogcolumn&sharetype=blogcolumn&sharerId=12862161&sharerefer=PC&sharesource=qinjh_&sharefrom=from_link目录边权为1的最短路径问题多源
- MPU6050 卡尔曼滤波算法 四元数欧拉姿态解算 STM32 CubeMX HAL库 MDKkeil5 零基础移植
辛尘大海
算法stm32嵌入式硬件
文章目录一、在cubemx开启IIC并设置好对应的IIC引脚二、generatecode生成代码三、复制以下的全部代码新建分别保存放到IncSrc文件夹中1.MPU6050.h2.MPU6050.C四、如何使用总结一、在cubemx开启IIC并设置好对应的IIC引脚二、generatecode生成代码(记得生成单个c.h.文件)!!!!!!三、复制以下的全部代码新建分别保存放到IncSrc文件夹中
- 常用图像增强算法原理及 OpenCV C++ 实现
埃菲尔铁塔_CV算法
opencv计算机视觉人工智能c++算法机器学习
一、引言图像增强是数字图像处理中的一个重要分支,其目的是改善图像的视觉效果,突出图像中的重要信息,或者将图像转换为更适合人或机器分析处理的形式。在实际应用中,图像增强技术广泛应用于医学影像、遥感图像、安防监控等领域。本文将详细介绍常用的图像增强算法原理,并给出基于OpenCVC++库的实现代码。二、图像增强算法分类图像增强算法可以分为空间域增强和频域增强两大类。空间域增强是直接对图像的像素值进行操
- 算法与数据结构(回文数)
a_j58
数据结构
题目思路对于这个我的第一想法就是转换为字符串然后判断字符串是否为回文,它会消耗额外的地址空间。还有一种想法就是将数字反转并判断是否为回文,但可能需要处理数字溢出的问题。若要避免出现数字溢出的问题,我们可以只反转它的一半,若前半部分和后半部分相同,则说明它是一个回文数。如123321,我们将它的后半部分反转,得到123,它与前半部分相同,说明它是一个回文数。算法首先,我们可以先考虑到它的一些临界情况
- 垃圾收集算法与收集器
HBryce24
JVMjvm
在JVM中,垃圾收集(GarbageCollection,GC)算法的核心目标是自动回收无用对象的内存,同时尽量减少对应用性能的影响。以下是JVM中主要垃圾收集算法的原理、流程及实际应用场景的详细介绍:一、标记-清除算法(Mark-Sweep)原理标记阶段:从GCRoots(如栈引用、静态变量)出发,遍历对象图,标记所有存活对象。清除阶段:扫描堆内存,回收未被标记的对象所占用的内存(直接释放,不整
- 【二分算法】-- 三种二分模板总结
雨雨雨雨点子
算法算法java开发语言leetcode
文章目录1.特点2.学习中的侧重点2.1算法原理2.2模板2.2.1朴素二分模板(easy-->有局限)2.2.2查找左边界的二分模板2.2.3查找右边界的二分模板1.特点二分算法是最恶心,细节最多,最容易写出死循环的算法====但是,一旦掌握了之后,二分算法就是最简单的算法。其实并不是一定要二分,三分,四分也都可以,但是根据概率学中的求期望数学中可知,二分是效率最高的。如果是三分的话,我们就像是
- 卡尔曼滤波算法从理论到实践:在STM32中的嵌入式实现
DOMINICHZL
STM32算法stm32嵌入式硬件
摘要:卡尔曼滤波(KalmanFilter)是传感器数据融合领域的经典算法,在姿态解算、导航定位等嵌入式场景中广泛应用。本文将从公式推导、代码实现、参数调试三个维度深入解析卡尔曼滤波,并给出基于STM32硬件的完整工程案例。一、卡尔曼滤波核心思想1.1什么是卡尔曼滤波?卡尔曼滤波是一种最优递归估计算法,通过融合预测值(系统模型)与观测值(传感器数据),在噪声干扰环境下实现对系统状态的动态估计。其核
- 递推和递归_一文学会递归递推
HR刀姐
递推和递归
递归算法和递推算法无论是在ACM竞赛还是项目工程上都有着极为广泛的应用,但想要完全掌握两者的思想并不容易,对于刚刚接触编程的人来说更是这样,我在初次接触递归递推时就吃了很多的苦头,除了当时对编程语言不太熟悉之外,最大的原因就是难以理解其中的思想,本文将二者结合代码分别讲解,力求以"理论+实践"的方式使读者明白两种算法。一箭双雕,一文双递。一.递归和递推的区别学习递归递推的一个容易遇到的问题就是混淆
- 从零手撕 LLaMa3 项目爆火(图解+代码)
机器学习社区
大模型深度学习大模型算法人工智能RAG多模态大模型Llama面试题
节前,我们组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。针对大模型技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备面试攻略、面试常考点等热门话题进行了深入的讨论。汇总合集《大模型面试宝典》(2024版)发布!一个月前,Meta发布了开源大模型llama3系列,在多个关键基准测试中优于业界SOTA模型,并在代码生成任务上全面领先。此后,开发
- 从零打造工业级智能二维码识别系统:基于PyQt5与ZXingCpp的实战指南
蜡笔小新星
PyQt5qt开发语言python图像处理经验分享pyqt扫码读码解码
文章目录第一章:系统全景解析1.1实时识别工作流图解1.2界面布局与功能分区说明1.3代码文件结构树形图第二章:环境搭建与依赖管理2.1必需组件清单2.2虚拟环境配置步骤2.3摄像头硬件检测方法第三章:多线程视频采集3.1VideoThread类设计剖析3.2图像采集核心循环3.3线程安全停止机制3.4信号槽通信实例第四章:图像预处理流水线4.1预处理方法开关实现4.2自适应二值化算法4.3图像格
- 递推和递归(C语言)
是小万吖
算法算法数据结构c语言
文章目录前言一、递推原理1.递推概念2.递推关系3.递推特点4.递推详例5.解决递推问题的步骤二、递归原理1.递归的概念2.构成递归的条件3.递归的模板4.递归详例三、递推和递归都可实现的算法1.问题描述2.问题分析3.递归实现4.递推实现四、递推和递归的优缺点1.递推的优缺点2.递归的优缺点五、递推和递归的相互转化1.递推转化为递归2.递归转化为递推前言主要探究递推和递归之间的关系提示:以下是本
- 深度学习:CPU和GPU算力
壹十壹
深度学习深度学习gpu算力人工智能
一、算力“算力”(ComputingPower)通常是指计算机或计算系统执行计算任务的能力。它是衡量系统处理数据、运行算法以及执行计算任务效率的重要指标。根据上下文,算力可以在以下几种场景中具体化:1.单机算力CPU算力:中央处理器的计算能力,通常用核心数量(cores)、时钟频率(GHz)、以及每秒浮点运算次数(FLOPS)等指标衡量。GPU算力:图形处理单元用于并行处理的能力,尤其是在深度学习
- PointPillars:数据预处理
壹十壹
激光雷达感知深度学习人工智能神经网络pythonc++
在PointPillars算法中,将点云划分为点柱(Pillars)是核心步骤之一,用于将稀疏点云数据转换为规则的张量表示,方便后续2D卷积操作。以下是点云划分为点柱的具体方法和实现步骤:1.点云划分为网格将3D空间划分为规则的网格,形成柱状区域(Pillars)。操作步骤:定义网格范围和分辨率:确定点云的空间范围,例如:Xmin,Xmax,Ymin,Ymax,Zmin,ZmaxX_{\text{
- FFplay文档解读-27-视频过滤器二
【零声教育】音视频开发进阶
音视频开发程序员编程音视频ffmpeg运维c++android
29.11boxblur将boxblur算法应用于输入视频。它接受以下参数:luma_radius,lrluma_power,lpchroma_radius,crchroma_power,cpalpha_radius,aralpha_power,ap接下来的选项的描述如下:luma_radius,lrchroma_radius,cralpha_radius,ar设置用于模糊相应输入平面的框半径的表
- 递推算法
aab__
算法
递推算法递推法的概念递推法是一种重要的数学方法,在数学的各个领域中都有广泛的运用,也是计算机用于数值计算的一个重要算法。这种算法特点是:一个问题的求解需一系列的计算,在已知条件和所求问题之间总存在着某种相互联系的关系,在计算时,如果可以找到前后过程之间的数量关系(即递推式),那么,从问题出发逐步推到已知条件,此种方法叫逆推。无论顺推还是逆推,其关键是要找到递推式。这种处理问题的方法能使复杂运算化为
- 盲签名算法的原理与C语言实现
c密码学信息安全加密解密
0x01概述盲签名(BlindSignature)是由Chaum,David提出的一种数字签名方式,其中消息的内容在签名之前对签名者是不可见的(盲化)。经过盲签名得到的签名值可以使用原始的非盲消息使用常规数字签名验证的方式进行公开验证。盲签名可以有效的保护隐私,其中签名者和消息作者不同,在电子投票系统和数字现金系统中会被使用。盲签名常常被类比成下面的场景:Alice想让Bob在自己的文件上签名,但
- 《 YOLOv5、YOLOv8、YOLO11训练的关键文件:data.yaml文件编写全解》
空云风语
人工智能YOLO机器视觉目标跟踪人工智能计算机视觉YOLO
走进YOLOv5、YOLOv8、YOLO11的data.yaml在计算机视觉领域的广袤星空中,目标检测无疑是一颗璀璨的明星,它广泛应用于自动驾驶、智能安防、工业检测、医疗影像分析等众多关键领域,发挥着不可或缺的作用。而YOLO系列算法,更是以其独特的“一次看全(YouOnlyLookOnce)”理念和卓越的性能,在目标检测领域中独树一帜,成为了众多研究者和开发者的首选工具。从最初的YOLOv1横空
- 【LLM】从零开始实现 LLaMA3
FOUR_A
LLM人工智能机器学习大模型llama算法
分词器在这里,我们不会实现一个BPE分词器(但AndrejKarpathy有一个非常简洁的实现)。BPE(BytePairEncoding,字节对编码)是一种数据压缩算法,也被用于自然语言处理中的分词方法。它通过逐步将常见的字符或子词组合成更长的词元(tokens),从而有效地表示文本中的词汇。在自然语言处理中的BPE分词器的工作原理如下:初始化:首先,将所有词汇表中的单词分解为单个字符或符号。例
- .NET 6 WebApi使用JWT
wenqi.xu
.net.netcore
JWT(JsonWebToken)jwt是一种用于身份验证的开放标准,他可以在网络之间传递信息,jwt由三部分组成:头部,载荷,签名。头部包含了令牌的类型和加密算法,载荷包含了用户的信息,签名则是对头部和载荷的加密结果。jwt鉴权验证是指在用户登录成功后,服务器生成一个jwt令牌并返回给客户端,客户端在后续的请求中携带该令牌,服务通过令牌的签名来确定用户的身份和权限。这种方式可以避免在每个请求中都
- 如果,你想找 AI大模型相关的工作,这三个建议你一定要看!
我爱学大模型
人工智能chatgptAI大模型AI大模型入门转行程序员
01各种大厂小厂创业团队和AI擦边的面试难度,由难到简单,依次是:大模型算法(⭐⭐⭐⭐⭐)模型部署加速(⭐⭐⭐⭐)RAG等相关技术(⭐⭐⭐)纯应用(⭐⭐)Prompt工程师等其他自媒体(⭐)会简单应用就行02这结果方向,B站找几个视频看看,这里推荐用Qwen7B,开源的模型,一个3060都能跑。例如这个,如何微调Qwen开源模型。https://www.bilibili.com/video/BV1
- 关联规则算法:揭秘数据中的隐藏关系,从理论到实战
秋声studio
机器学习算法详解关联规则算法数据挖掘Apriori算法FP-Growth算法大数据优化数据预处理增量式更新
引言在当今数据驱动的时代,如何从海量数据中挖掘出有价值的信息成为了各行各业的核心挑战。关联规则算法作为数据挖掘领域的重要工具,能够帮助我们发现数据中隐藏的关联关系,从而为决策提供支持。无论是电商平台的商品推荐,还是医疗领域的疾病诊断,关联规则算法都展现出了强大的应用潜力。本文将从基础概念出发,逐步深入探讨关联规则算法的核心原理、经典算法及其优化策略。无论你是数据挖掘的初学者,还是希望进一步了解关联
- 大语言模型(LLM)入门学习路线图_llm教程,从零基础到精通,理论与实践结合的最佳路径!
AGI学习社
语言模型学习人工智能LLM大模型大数据自然语言处理
Github项目上有一个大语言模型学习路线笔记,它全面涵盖了大语言模型的所需的基础知识学习,LLM前沿算法和架构,以及如何将大语言模型进行工程化实践。这份资料是初学者或有一定基础的开发/算法人员入门活深入大型语言模型学习的优秀参考。这份资料重点介绍了我们应该掌握哪些核心知识,并推荐了一系列优质的学习视频和博客,旨在帮助大家系统性地掌握大型语言模型的相关技术。大语言模型(LargeLanguageM
- C 语言中的数组详解
812503533
c语言java开发语言
在C语言中,数组是一种非常基础且常用的数据结构。数组是存储一组相同类型元素的集合,允许我们以统一的方式访问和操作这些元素。C语言中的数组不仅在编程中使用广泛,而且它的灵活性和效率使得它成为了许多算法实现的基础。本篇文章将深入分析C语言中的一维数组,包括定义、存储方式、操作方式、常见问题等等,所有的数据结构都可以从这几个方面来学习。1.数组的定义与存储方式1.1一维数组的定义数组的定义方式包括数组大
- C++随机数
宁玉AC
c学习c++开发语言
目录一、名著参考二、详解1.rand()函数2.time(0)3.srand(time(0))4.获取指定范围内的随机数(含指定位数)一、名著参考可以使用cstdlib头文件中的rand()函数来获得随机整数;这个函数返回0~RAND_MAX之间的随机整数;rand()函数生成的是伪随机数。即每次在同一个系统上执行这个函数的时候,rand()函数生成同一序列的数。rand()函数的算法使用一个叫种
- 三种优化算法
旅者时光
算法算法python开发语言
本文将总结遗传算法、粒子群算法、模拟退火三种优化算法的核心思路,并使用python完整实现。实际上,越来越多的优秀算法已经被封装为一个易用的接口。很多时候,一行代码就能实现我们的需求。但了解这些算法的基本逻辑,能够使用最基本的代码实现它。无论对于提升我们的编程能力还是解决问题的能力,都会大有裨益。甚至,改变我们思考问题的方式。1、遗传算法遗传算法,顾名思义,就是借鉴了生物通过遗传变异来逐渐适应环境
- 蓝桥杯冲击省一必刷题单(一)
小咖拉眯
蓝桥杯蓝桥杯java算法数据结构
此题单为算法基础精选题单,包含蓝桥杯常考考点以及各种经典算法,可以帮助你打牢基础,查漏补缺。本题单目标是冲击蓝桥杯省一国一,团体程序天梯赛个人国三、XCPC区域赛铜/银奖前言本次题单重点关注日期问题,进制转换问题,排序问题,其中日期问题和进制转换问题,几乎是必考题,几乎每年蓝桥杯都能看到,大家需要重点掌握。日期问题:蓝桥杯热门考点,基本每年省赛必考。进制转换问题:与日期一样蓝桥杯热门考点,基本每年
- Vue3 基础教程:从入门到实践 (保姆级教学)
前段技术人
学习前端vue.jsvue
一、Vue3简介Vue.js是一款用于构建用户界面的JavaScript框架,而Vue3作为其最新的主要版本,带来了诸多令人瞩目的改进与新特性,使其在前端开发领域备受青睐。(一)Vue3的优势性能提升:Vue3重写了虚拟DOM算法,显著提高了挂载、更新和渲染的速度。在处理大型列表或频繁数据更新的场景时,Vue3的表现更为出色,能够为用户带来更流畅的交互体验。例如,一个包含大量商品信息的电商产品列表
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号