python
import torch
import torch.nn as nn
from PIL import Image
import numpy as np
import cv2
class SobelEdgeDetector(nn.Module):
def __init__(self):
super(SobelEdgeDetector, self).__init__()
self.convx = nn.Conv2d(1,1,3,padding=1)
self.convy = nn.Conv2d(1,1,3,padding=1)
self.convx.weight.data = torch.FloatTensor([[1,0,-1],[2,0,-2],[1,0,-1]]).unsqueeze(0).unsqueeze(0)
self.convy.weight.data = torch.FloatTensor([[1,2,1],[0,0,0],[-1,-2,-1]]).unsqueeze(0).unsqueeze(0)
def forward(self, x):
grad_x = self.convx(x)
grad_y = self.convy(x)
edges = torch.sqrt(grad_x**2 + grad_y**2)
return edges
def norm_gray(img):
max_value = np.max(img)
min_value = np.min(img)
img = ( img - min_value) / (max_value - min_value ) * 255
img = np.clip(img, 0, 255).astype(np.ubyte)
return img
if __name__ == '__main__':
img = cv2.imread("/home/lhb_python_2/seg_2d/JPEGImages/Abyssinian_1.jpg", 0)
img = torch.tensor(img,dtype=torch.float32).unsqueeze(0).unsqueeze(0)
print(img.shape)
model = SobelEdgeDetector()
model.eval()
edges = model(img)
outputs = edges.squeeze().detach().numpy()
print(outputs.shape)
outputs = norm_gray(outputs)
cv2.imwrite("edge.jpg",outputs)
python结果
cpp
#include
#include
#include
#include
using std::cout; using std::endl;
using std::string;
inline torch::nn::Conv2dOptions Conv2dOptions(
int64_t in_channels, int64_t out_channles, int64_t kernel_size,
int64_t stride = 1, int64_t padding = 1, bool with_bias = false
)
{
torch::nn::Conv2dOptions conv2dOptions = torch::nn::Conv2dOptions(in_channels, out_channles, kernel_size);
conv2dOptions.stride(stride);
conv2dOptions.padding(padding);
conv2dOptions.bias(with_bias);
return conv2dOptions;
}
class SobelEdgeDetector : public torch::nn::Module
{
private:
torch::nn::Conv2d convx{ nullptr };
torch::nn::Conv2d convy{ nullptr };
public:
SobelEdgeDetector(int in_channels, int out_channels, int kernel_size, int stride, int padding = 1);
torch::Tensor forward(torch::Tensor x);
};
int main()
{
SobelEdgeDetector model(1, 1, 3, 1, 1);
std::string imgPath("C:\\Users\\Administrator\\Downloads\\Abyssinian_1.jpg");
cv::Mat img = cv::imread(imgPath, 0);
torch::Tensor imgTesor = torch::from_blob(img.data, { img.rows, img.cols, 1 }, torch::kByte).permute({ 2,0,1 }).unsqueeze(0).to(torch::kFloat32);
cout << imgTesor.sizes() << endl;
model.eval();
auto outTensor = model.forward(imgTesor);
float min_val = outTensor.min().item<float>();
float max_val = outTensor.max().item<float>();
outTensor = (outTensor - min_val) / (max_val - min_val) * 255;
cv::Mat outImg(outTensor.size(2), outTensor.size(3), CV_32FC1, outTensor.data_ptr<float>());
cv::imwrite("edge.jpg", outImg);
return 0;
}
SobelEdgeDetector::SobelEdgeDetector(int in_channels, int out_channels, int kernel_size, int stride, int padding)
{
convx = register_module("convx", torch::nn::Conv2d(Conv2dOptions(in_channels, out_channels, kernel_size, stride, padding)));
convy = register_module("convy", torch::nn::Conv2d(Conv2dOptions(in_channels, out_channels, kernel_size, stride, padding)));
convx->weight = torch::tensor({ {1,0,-1},{2,0,-2},{1,0,-1 } }, torch::kFloat32);
convx->weight = convx->weight.unsqueeze(0);
convx->weight = convx->weight.unsqueeze(0);
convy->weight = torch::tensor({ {1,2,1},{0,0,0},{-1,-2,-1 } }, torch::kFloat32);
convy->weight = convy->weight.unsqueeze(0);
convy->weight = convy->weight.unsqueeze(0);
}
torch::Tensor SobelEdgeDetector::forward(torch::Tensor x)
{
torch::Tensor gradX = this->convx(x);
torch::Tensor gradY = this->convy(x);
torch::Tensor edges = torch::sqrt(gradX * gradX + gradY * gradY);
return edges;
}
c++结果