- 大神之路-起始篇 | 第13章.计算机科学导论之【文件结构】学习笔记
全栈工程师修炼指南
从业必看书籍专栏学习笔记
欢迎关注「WeiyiGeek」公众号点击下方卡片即可关注我哟!设为「星标⭐」每天带你基础入门到进阶实践再到放弃学习!涉及网络安全运维、应用开发、物联网IOT、学习路径、个人感悟等知识“花开堪折直须折,莫待无花空折枝。”作者主页:[https://www.weiyigeek.top]作者博客:[https://blog.weiyigeek.top]作者答疑学习交流群:
- Redis学习总结(15)——Redis 基本数据类型使用场景
一杯甜酒
RedisRedis基本数据类型使用场景
一、StringStrings数据结构是简单的key-value类型,value其实不仅是String,也可以是数字.常用命令:set,get,decr,incr,mget等。应用场景:String是最常用的一种数据类型,普通的key/value存储都可以归为此类.即可以完全实现目前Memcached的功能,并且效率更高。还可以享受Redis的定时持久化,操作日志及Replication等功能。除
- Prompt 精通之路(四)- AI 赋能:10 个超实用的 Prompt 模板,覆盖写作、编程、学习和办公
程序员阿超的博客
Prompt精通之路:从零基础到AI高效玩家人工智能prompt学习Prompt模板AI工作流ChatGPT应用生产力工具
Prompt精通之路:系列文章导航第一篇:[本文]AI时代的新语言:到底什么是Prompt?为什么它如此重要?第二篇:告别废话!掌握这4个黄金法则,让你的Prompt精准有效第三篇:像专业人士一样思考:Zero-Shot,Few-Shot和思维链(CoT)技巧详解第四篇:AI赋能:10个超实用的Prompt模板,覆盖写作、编程、学习和办公第五篇:构建你的“AI指令系统”:超越简单提问的CRISPE
- 微调 || RAG,项目落地怎么选?LLM应用选型指南,适用场景全解析
认知超载
AI人工智能
基本定义微调:是指利用更小、更具针对性的数据集对经过预先训练的大语言模型进一步训练的过程。在这个过程中,模型基于新数据集修改权重和参数,学习特定于任务的模式,同时保留来自最初预训练模型的知识。RAG:即检索增强生成,是将检索大量外部知识的过程与文本生成结合在一起的一种方法。它会从大型外部数据库中检索与输入问题相关的信息,将这些信息作为上下文提供给大语言模型,辅助其生成回答。微调适用场景1.特定领域
- 百度颠覆了自己,飞算JavaAI造福了中国程序员!
飞算JavaAI开发助手
百度
在当今这个科技日新月异的时代,企业纷纷寻求技术突破,以期在激烈的市场竞争中脱颖而出。百度,作为中国互联网行业的领军企业之一,凭借其强大的科技实力和创新能力,在人工智能等多个领域取得了显著成就,并正在逐步颠覆自身的传统形象。百度自成立之初,就将技术创新视为企业的生命线。从最初的搜索引擎技术,到如今的深度学习、自然语言处理、计算机视觉等前沿领域,百度始终走在技术革新的前沿。其自主研发的飞桨深度学习平台
- Gartnet《Solution Path for Implementing Hybrid Cloud Applications With On-Premises Data》学习心得
架构师学习成长之路
大数据架构
一、引言随着企业数字化转型的深入,混合云架构逐渐成为一种中长期的现实选择。软件架构师们在将应用逻辑迁移到云端的同时,往往面临着数据层难以同步迁移的困境。Gartner的这份报告《SolutionPathforImplementingHybridCloudApplicationsWithOn-PremisesData》为我们提供了一条实施混合云应用的清晰路径,涵盖了从迁移策略的确定、应用与数据层的整
- Prompt 精通之路(五)- 构建你的“AI 指令系统”:超越简单提问的 CRISPE 与 APE 框架
Prompt精通之路:系列文章导航第一篇:[本文]AI时代的新语言:到底什么是Prompt?为什么它如此重要?第二篇:告别废话!掌握这4个黄金法则,让你的Prompt精准有效第三篇:像专业人士一样思考:Zero-Shot,Few-Shot和思维链(CoT)技巧详解第四篇:AI赋能:10个超实用的Prompt模板,覆盖写作、编程、学习和办公第五篇:构建你的“AI指令系统”:超越简单提问的CRISPE
- C#学习日志
future1412
c#学习java
构造函数和析构函数知识点一构造函数基本概念在实例化对象时会调用的用于初始化的函数如果不写默认存在一个无参构造函数构造函数的写法1.没有返回值2.函数名和类名必须相同3.没有特殊需求时一般都是public的classPerson{publicstringname;publicintage;类中是允许自己申明无参构造函数的结构体是不允许publicPerson(){name="怪盗基德";age=18
- ubuntu环境搭建四:安装和使用git
小坚学Linux
ubuntu环境搭建gitubuntugithub
1.安装gitsudoapt-getinstallgit2.配置git的名字和邮箱gitconfig--globaluser.name"jian"gitconfig--globaluser.email"
[email protected]"gitconfig--globalcore.editorvim提交内核patch的配置gitconfig--globaluser.name"RuijianLi"gi
- 【深度学习:进阶篇】--4.2.词嵌入和NLP
西柚小萌新吖(●ˇ∀ˇ●)
#深度学习深度学习自然语言处理人工智能
在RNN中词使用one_hot表示的问题假设有10000个词每个词的向量长度都为10000,整体大小太大没能表示出词与词之间的关系例如Apple与Orange会更近一些,Man与Woman会近一些,取任意两个向量计算内积都为0目录1.词嵌入1.1.特点1.3.word2vec介绍1.3.Word2Vec案例1.3.1.训练语料1.3.2.步骤1.3.3.代码2.测试代码1.词嵌入定义:指把一个维数
- 【深度学习】卷积神经网络(CNN)原理
chaser&upper
深度学习神经网络卷积计算机视觉
【深度学习】卷积神经网络原理1.卷积神经网络的组成2.卷积层2.1卷积运算过程3.padding-零填充3.1ValidandSame卷积3.2奇数维度的过滤器4.stride-步长5.多通道卷积5.1多卷积核(多个Filter)6.卷积总结7.池化层(Pooling)8.全连接层9.总结1.卷积神经网络的组成定义卷积神经网络由一个或多个卷积层、池化层以及全连接层等组成。与其他深度学习结构相比,卷
- 深度学习学习经验——卷积神经网络(CNN)
Linductor
深度学习学习经验深度学习学习cnn
卷积神经网络卷积神经网络(CNN)1.卷积神经网络的基本组成2.卷积操作3.激活函数(ReLU)4.池化操作5.全连接层6.卷积神经网络的完整实现项目示例项目目标1.加载数据2.卷积层:图像的特征探测器2.1第一个卷积层3.激活函数:增加非线性4.池化层:信息压缩器5.多层卷积和池化:逐层提取更高层次的特征6.全连接层:分类器7.模型训练和测试完整的项目示例代码总结卷积神经网络(CNN)卷积神经网
- LeetCode - #106 从中序与后序遍历序列构造二叉树
网罗开发
Swift#LeetCodeleetcode算法职场和发展
文章目录前言1.描述2.示例3.答案关于我们前言我们社区陆续会将顾毅(Netflix增长黑客,《iOS面试之道》作者,ACE职业健身教练。)的Swift算法题题解整理为文字版以方便大家学习与阅读。LeetCode算法到目前我们已经更新到105期,我们会保持更新时间和进度(周一、周三、周五早上9:00发布),每期的内容不多,我们希望大家可以在上班路上阅读,长久积累会有很大提升。不积跬步,无以至千里;
- LeetCode - #144 二叉树的前序遍历
网罗开发
Swiftleetcode算法职场和发展
文章目录前言1.描述2.示例3.答案关于我们前言我们社区陆续会将顾毅(Netflix增长黑客,《iOS面试之道》作者,ACE职业健身教练。)的Swift算法题题解整理为文字版以方便大家学习与阅读。LeetCode算法到目前我们已经更新到143期,我们会保持更新时间和进度(周一、周三、周五早上9:00发布),每期的内容不多,我们希望大家可以在上班路上阅读,长久积累会有很大提升。不积跬步,无以至千里;
- Ubuntu22+ROS2+QtCreator+Ros_Qtc_Plugin开发环境搭建
ZPC8210
ROSpythongithubgit
Ubuntu22+ROS2+QtCreator+Ros_Qtc_Plugin开发环境搭建1.写在前面最近重装了ubuntu22.04,被告知ubuntu22已经不支持ROS1了,想着ROS2毕竟是大势所趋,所以安装了ROS2准备进行相应的学习开发。折腾了两天,没发现一款好用的、适合ROS2开发的IDE。之前开发ROS1程序时一直用的QTC,我本以为QTC应该还没有对应的ROS2插件,没想到网上查找
- Python Day44
别勉.
python机器学习python开发语言
Task:1.预训练的概念2.常见的分类预训练模型3.图像预训练模型的发展史4.预训练的策略5.预训练代码实战:resnet181.预训练的概念预训练(Pre-training)是指在大规模数据集上,先训练模型以学习通用的特征表示,然后将其用于特定任务的微调。这种方法可以显著提高模型在目标任务上的性能,减少训练时间和所需数据量。核心思想:在大规模、通用的数据(如ImageNet)上训练模型,学习丰
- WebGIS开发系列教程(5):Openlayers高级功能
WebGIS开发
GIS开发javascript开发语言webgisopenlayers
本系列教程为webgis二维开发入门openlayers零基础小白学习教程,本篇为第五篇。完整版可以查看文末链接下载。1.地图标注功能地图标注是将空间位置信息点与地图关联,通过图标、窗口等形式把相关的信息展现到地图上。地图标注也是WebGIS中比较重要的功能之一,在大众应用中较为常见。地图标注的基本原理:获取标注点的空间位置(X、Y逻辑坐标),在该位置上叠加显示图标(或包含信息的小图片),必要时以
- 我的创作纪念日
勤勉螺丝钉
学习
手指轻敲键盘,一下又一下,思绪如潮水般涌来。我写了很多字,又反复斟酌,最终一个个删除。不是无话可说,而是想表达的太多,怕言语不够真挚,怕文字不够动人。官方提供的模板固然规范,但总觉得少了些属于自己的温度与风格。于是,我选择放下模板,回归内心,用最真诚的方式写下这段话。从开始创作至今,已经整整512天了。这五百多个日夜,有过迷茫、有过坚持、也有过收获。一路走来,我在CSDN这个知识平台上不断学习、不
- 数据结构学习之栈
楼田莉子
数据结构学习笔记算法数据结构c语言
本篇博客我们将深入学习数据结构中栈与队列相关的内容作者的个人gitee:楼田莉子(riko-lou-tian)-Gitee.com目录概念栈的实现初始化销毁入栈判空出栈获取栈顶元素栈的有效元素个数源代码与栈相关的算法题(力扣)有效的括号编辑概念栈是一种特殊的线性表,只允许在固定的一端进行插入删除元素的操作。进行数据插入和删除操作的一端叫栈顶,另一端叫栈底。遵循“后进先出”的原则。下图就是对栈后进先
- Instrct-GPT 强化学习奖励模型 Reward modeling 的训练过程原理实例化详解
John_今天务必休息一天
2_大语言模型基础#2.2生成式预训练语言模型GPTgptlog4j语言模型人工智能自然语言处理算法
Instrct-GPT强化学习奖励模型Rewardmodeling的训练过程原理实例化详解一、批次处理的本质:共享上下文的比较对捆绑(1)为什么同一prompt的比较对必须捆绑?(2)InstructGPT的优化方案二、输入输出与损失函数的具体构造(1)输入输出示例(2)人工标注数据的处理(3)损失函数的计算过程(4)反向传播的核心逻辑三、为什么不需要人工标注分值?(1)排序数据的天然属性(2)避
- 基于土壤湿度信息的智能农田灌溉系统设计
自己淋过雨,想为你撑把伞之所以会把自己三年前的本科毕业设计发布至平台上,其主要原因是对自己以前的过往再做个总结。人生嘛,只有一路走来回头再看的时候,才会感慨万千,触目良多,时不时会想,到底什么样的结局才配得上我这二十几年的颠沛流离(狗头^_^)。个人强烈建议高中学弟学妹们一定要好好学习,考上一个都是传道授业()的好大学(表达的可能有些不妥,但懂得都懂……)。本文为2021年本人本科毕业设计。时间跨
- Android学习笔记
LXR小朋友
android学习笔记
一、Android四大组件精要1.Activity生命周期:onCreate()→onStart()→onResume()→onPause()→onStop()→onDestroy()重点场景:屏幕旋转:onSaveInstanceState()保存临时数据返回栈管理:launchMode(standard/singleTop/singleTask/singleInstance)页面跳转:Inte
- 成为高级Python开发人员的完整学习路线与核心知识体系
引言Python已成为全球最受欢迎的编程语言之一,其简洁的语法和强大的生态系统使其在数据科学、Web开发、自动化、人工智能等领域占据重要地位。然而,从初级Python程序员到真正的高级开发人员,需要掌握一系列深入的知识点和实践经验。本文将详细介绍成为高级Python开发人员必备的核心知识体系,并提供系统化的学习资源,帮助你规划专业发展路径。第一部分:Python语言基础进阶1.Python语言特性
- 【AI】闭环反馈:构建从用户处学习的人工智能
秋说
AI广延人工智能AI
文章目录前言AI产品性能的双重视角:模型指标vs用户信号模型指标:AI系统的“内部视角”用户信号:AI产品的“外部视角”用户信号类型用户信号的价值模型指标为何难以独立支撑产品成功如何设计AI产品的全面反馈闭环一、统一成功标准:模型指标+用户价值二、用户信号的数据采集策略三、整合多源数据流四、分析与洞察从反馈到改进:迭代驱动的闭环循环一、识别并优先解决核心问题二、将用户信号转化为模型改进方向三、产品
- AppML 案例简介
沐知全栈开发
开发语言
AppML案例简介引言AppML,全称为“应用程序机器学习”,是一种将机器学习技术与移动应用开发相结合的技术框架。它旨在简化移动应用的机器学习功能集成,使得开发者无需深入了解复杂的机器学习算法,即可将强大的AI功能引入他们的应用中。本文将简要介绍AppML的一些成功案例,展示其在不同领域的应用和价值。AppML案例一:健康监测应用案例概述:一款名为“HealthMate”的健康监测应用利用AppM
- 【数据标注师】事件标注2
试着
数据标注师数据标注师事件标注
目录一、**深入理解事件标注的核心架构**1.**事件五要素(标注核心对象)**2.**三大项目特性**二、**四阶段系统学习法**▶**阶段1:掌握标注指南(20%理论+80%案例)**▶**阶段2:触发词精准识别训练**▶**阶段3:要素抽取实战技巧**▶**阶段4:复杂场景突破三、**高效标注工具使用指南**1.**快捷键流操作(以主流工具为例)**2.**颜色编码法**四、**错误防御体系
- 广州华锐互动:以创新科技赋能教育,开启沉浸式学习
广州华锐视点
VRar虚拟现实
在教育领域,广州华锐互动致力于打破传统教学的局限性,为师生们带来全新的沉浸式学习体验。广州华锐互动通过开发VR虚拟教学课件,将抽象的知识转化为生动、逼真的虚拟场景,让学生能够身临其境地感受知识的魅力。比如在历史课上,学生可以借助VR设备穿越时空,来到古代的战场、宫殿,亲身体验历史事件的发生;在地理课上,学生可以“置身”于世界各地的名胜古迹、自然奇观,直观地了解地理环境的特点。互动学习平台也是广州华
- (论文总结)思维链激发LLM推理能力
靈镌sama
论文解读人工智能
研究背景&动机背景:扩大模型规模已被证实具有提升模型性能和模型效率的功效,但是LLM对于完成推理、算术任务仍有较大不足。动机:从之前的应用和研究中得知,可以用生成自然语言解释、使用神经符号等形式语言的方法来提高大模型的算术推理能力,当时采用了从头预训练和微调模型的方法,耗费的成本较多;而且大模型具有根据少量文本提示进行上下文少样本学习的能力,使用少量输入输出示例即可提高LLM的推理性能,而不必对单
- <电子幽灵>开发笔记:BAT基础笔记(一)
BAT脚本基础笔记(一)介绍费曼学习法最重要的部分,即把知识教给一个完全不懂的孩子——或者小白。为了更好的自我学习,也为了让第一次接触某个知识范畴的同学快速入门,我会把我的学习笔记整理成电子幽灵系列。提示:作为低代码工具的笔记,这里会用特殊字体表示要用到的函数等等。请若要学习,请结合相关工具边用边学。BAT基础笔记(一)BAT脚本基础笔记(一)介绍简介在哪里编写BAT代码?BAT基本语法1.基本命
- <电子幽灵>前端第一件:HTML基础笔记下
靈镌sama
电子幽灵随手记前端html笔记
HTML基础笔记(下)介绍费曼学习法最重要的部分,即把知识教给一个完全不懂的孩子——或者小白。为了更好的自我学习,也为了让第一次接触某个知识范畴的同学快速入门,我会把我的学习笔记整理成电子幽灵系列。提示:文章的是以解释-代码块-解释的结构呈现的。当你看到代码块并准备复制复现的时候,最好先保证自己看过了代码块前后的解释。<电子幽灵>前端第一件:HTML基础笔记上中,最基础的一部分HTML标签和已经以
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理