- 【spark床头书系列】Spark Streaming 编程权威使用指南
BigDataMLApplication
spark大数据流数据处理#大数据spark大数据分布式
SparkStreaming编程权威使用指南文章目录SparkStreaming编程权威使用指南概述快速示例基本概念链接初始化StreamingContext离散化流(DStreams)输入DStreams和Receivers基本源文件流基于自定义接收器的流作为流的RDD队列高级源自定义源接收器的可靠性在DStreams上的转换操作updateStateByKey操作transform操作窗口操作
- 实习成长之路:关于ElasticSearch深度分页带来的思考,如何解决深度分页和跳页
会写代码的花城
实习踩坑之路reids并发elasticsearch搜索引擎分布式
问题引入我们在平常使用ElasticSearch构建查询条件的时候一般用的都是from+size的方式进行分页查询,但是如果我们的页数太深/页面大小太大(from*size)>10000就会引发一个错误,我们将会得到一个错误这是为什么呢?因为ES的分页查询其实是这样来的因为ElasticSeach的天生分布式的原因,我们的数据是分散在几个分片中的,而我们设置了from+size需要对全部数据进行查
- Spark Streaming的背压机制的原理与实现代码及分析
weixin_30777913
spark大数据python
SparkStreaming的背压机制是一种根据JobScheduler反馈的作业执行信息来动态调整Receiver数据接收率的机制。在Spark1.5.0及以上版本中,可以通过设置spark.streaming.backpressure.enabled为true来启用背压机制。当启用背压机制时,SparkStreaming会自动根据系统的处理能力来调整数据的输入速率,从而在流量高峰时保证最大的吞
- MongoDB 大俗大雅,上来问分片真三俗 -- 4 分什么分
Austindatabases
mongodb数据库
开头还是介绍一下群,如果感兴趣PolarDB,MongoDB,MySQL,PostgreSQL,Redis,OceanBase,SqlServer等有问题,有需求都可以加群群内有各大数据库行业大咖,可以解决你的问题。加群请联系liuaustin3,(共2710人左右1+2+3+4+5+6+7+8+9)(123456群均已爆满,7群400+,开8群9群)这是MongoDB宣传周的第五篇,这周真漫长,
- 大数据技术在数据安全治理中的应用
罗思付之技术屋
综合技术探讨及方案专栏大数据
摘要面对新形势下的数据安全治理挑战,顺应数据安全领域的技术发展趋势,针对大型国企在数据安全治理实际应用中突出的关键权限人员识别问题,提出了一种基于图算法的关键权限人员识别技术。该技术可以发现系统中潜在的权限影响因素,并可从多个角度衡量不同含义的权重影响力,识别结果可解释性强。针对数据安全治理中的用户与实体行为异常检测问题,提出一种基于生成对抗网络的用户与实体行为异常检测方法,实验结果表明,所提方法
- Kafka原理总结
DEMOAHUI
mq中间件kafka
Kafka是一个开源的分布式流式处理平台,在这个平台上可以发布、订阅以及处理数据流,具有强大的吞吐能力,让Kafka成为了一个高性能的发布与订阅消息系统一:概念理解Broker部署Kafka进程的服务被称之为Broker,Broker会接收Producer的消息,持久化到本地,然后Comsumer通Pull的形式进行消息拉取,通常使用集群的形式进行部署Producer生产者,即发送消息的一方,往B
- 阿里巴巴大数据系统体系架构
大连赵哥
大数据架构
数据应用层:这是最顶层,面向不同的用户群体提供服务,包括对内(公司内部使用)、对平台(平台用户)、对商家(商家使用)、对公众(普通消费者)。数据服务与基础工具层:这一层提供了一些基础服务和工具,例如:OneService:可能是一种服务或工具,用于统一数据服务。TDDL+MySQL:TDDL是淘宝分布式数据层的缩写,与MySQL结合使用,提供数据库服务。HBase:一个分布式列存储系统,适合于存储
- 1-structedStreaming-基本流程(2.3.1)
github_28583061
javaspark大数据mysqlhadoop
基本流程--spark2.3.1新定义接口--中间使用了一些过度接口为了兼容老版本如:BaseStreamingSourceDataSource为一个类,定义了可插拔的数据源,对应一些列旧的数据源DataSourceV2spark2.3.1新接口,只是一个接口,没有任何方法,需要配合ReadSupport或者WriteSupport接口等一起MicroBatchReadSupport--实现创建M
- 1-structedStreaming-基本流程(2.2.1)
github_28583061
javaspark大数据hadoophive
基本流程spark2.2.1StructuredNetworkWordCount统计来自socket的wordcount创建stream,指定数据源DataStreamReader--从外部存储加载流数据的接口lines=spark.readStream.format("socket").option("host",host).option("port",port).load()加载数据流为Dat
- java cap理论_架构设计之「 CAP 定理 」
Can Li
javacap理论
点击上方“Java知音”,选择“置顶公众号”技术文章第一时间送达!作者:奎哥来源:不止思考在计算机领域,如果是初入行就算了,如果是多年的老码农还不懂CAP定理,那就真的说不过去了。CAP可是每一名技术架构师都必须掌握的基础原则啊。现在只要是稍微大一点的互联网项目都是采用分布式结构了,一个系统可能有多个节点组成,每个节点都可能需要维护一份数据。那么如何维护各个节点之间的状态,如何保障各个节点之间数据
- SpringCloud分布式中怎么使用open-feign来相互调用微服务(前提是服务都要注册到注册中心【zookeeper,或者nocas】)
JISOOLUO
实用的示例网关java接口spring
1、引入open-feignorg.springframework.cloudspring-cloud-starter-openfeign
- python 分布式集群_Python搭建Spark分布式集群环境
小国阁下
python分布式集群
前言ApacheSpark是一个新兴的大数据处理通用引擎,提供了分布式的内存抽象。Spark最大的特点就是快,可比HadoopMapReduce的处理速度快100倍。本文没有使用一台电脑上构建多个虚拟机的方法来模拟集群,而是使用三台电脑来搭建一个小型分布式集群环境安装。本教程采用Spark2.0以上版本(比如Spark2.0.2、Spark2.1.0等)搭建集群,同样适用于搭建Spark1.6.2
- 性能优化案例:通过合理设置spark.shuffle.memoryFraction参数的值来优化PySpark程序的性能
weixin_30777913
pythonspark大数据
在PySpark中,合理调整spark.shuffle.memoryFraction参数可以有效优化Shuffle阶段的性能,尤其是在存在大量磁盘溢出的场景下。通过合理设置spark.shuffle.memoryFraction并结合其他优化手段,可显著减少Shuffle阶段的磁盘I/O,提升PySpark作业的整体性能。以下是优化案例的总结及分步说明:优化背景问题现象:PySpark作业在Shu
- spark集群完全分布式搭建
。 。,。,。
分布式spark大数据
1.spark的运行架构(主从模式)主节点:master-----资源管理调度和任务的分配---------类似yarn从节点:worker-----执行具体的计算任务整体运行架构:编写spark运行程序用户将应用程序提交给spark集群驱动其会创建对应的编程入口(sparkcontext/sparksession)主节点复制资源管理调度和任务分配从节点执行计算任务(多个计算任务:每个计算任务会分
- 【Python】RocketMQ 基础使用
Encarta1993
Pythonrocketmq
目录1.介绍2.实践2.1.启动消费者2.2.启动生产者1.介绍RocketMQ是一个开源的分布式消息传递系统,最初由阿里巴巴集团开发并于2012年开源。它旨在解决高可靠性、高吞吐量、低延迟和可伸缩性等大规模分布式系统下的消息通信需求。RocketMQ的设计目标是提供一种灵活、可靠、高性能的消息传递解决方案,适用于各种场景,包括在线消息通信、日志处理、流式处理、事件驱动架构等。下面是对Rocket
- 基于Python+Spark的气象天气分析大屏可视化系统设计与实现毕设源码
sj52abcd
pythonspark课程设计毕业设计
博主介绍:✌专注于VUE,小程序,安卓,Java,python,物联网专业,有17年开发经验,长年从事毕业指导,项目实战✌选取一个适合的毕业设计题目很重要。✌关注✌私信我✌具体的问题,我会尽力帮助你。研究的背景:随着我国气象事业的发展,气象数据的实时分析和可视化成为越来越重要的任务。然而,目前气象数据的分析与展示手段仍然较为传统,缺乏交互性,不能满足现代气象业务的需求。因此,研究一种基于Pytho
- 基于Spark的实时计算服务的流程架构
小小搬运工40
spark大数据
基于Spark的实时计算服务的流程架构通常涉及多个组件和步骤,从数据采集到数据处理,再到结果输出和监控。以下是一个典型的基于Spark的实时计算服务的流程架构:1.数据源数据源是实时计算服务的起点,常见的数据源包括:消息队列:如Kafka、RabbitMQ、AmazonKinesis等。日志系统:如Flume、Logstash等。传感器数据:物联网设备产生的数据流。数据库变更数据捕获(CDC):如
- 【硬刚大数据】2021年从零到大数据专家之Hbase八股文
王知无(import_bigdata)
欢迎关注博客主页:https://blog.csdn.net/u013411339欢迎点赞、收藏、留言,欢迎留言交流!本文由【王知无】原创,首发于CSDN博客!本文首发CSDN论坛,未经过官方和本人允许,严禁转载!本文是对《【硬刚大数据之学习路线篇】2021年从零到大数据专家的学习指南(全面升级版)》的面试部分补充。硬刚大数据系列文章链接:2021年从零到大数据专家的学习指南(全面升级版)
- Apache STORM工作原理详解
Neil Parker
apachestormjava
ApacheStorm是一个分布式实时计算系统,允许用户在集群上运行流式数据处理应用程序。它的核心原理是将流式数据分割成多个小块,每个小块都会被分配给不同的计算节点进行处理,并且处理结果会被发送到下一个节点,直到达到最终结果。以下是ApacheStorm的工作原理:Nimbus是整个集群的控管核心,负责topology的提交、运行状态监控、任务重新分配等工作。zk就是一个管理者,监控者。总体描述:
- 史上最强!Spring Boot 3.3 高效批量插入万级数据的多种方案
m0_74825074
面试学习路线阿里巴巴springboot后端java
SpringBoot3.3多种方式实现高效批量插入万级数据,史上最强!在大数据处理场景下,如何高效地将大量数据插入数据库是一个重要课题。本文基于SpringBoot3.3及MyBatis-Plus,介绍几种高效的批量插入数据的方法,包括:使用JDBC批处理使用自定义SQL批处理单条插入(for循环)拼接SQL语句插入MyBatis-Plus的saveBatch方法循环插入+开启批处理模式每种方式都
- Spring Boot 整合 Apollo 配置中心实战
疯狂的键盘侠
springbootjavaapollospringbootjava
SpringBoot整合Apollo配置中心实战一、Apollo简介二、环境准备三、项目整合步骤四、配置使用示例五、常见问题及解决在分布式系统开发中,配置管理至关重要。Apollo作为携程开源的一款可靠的配置中心,能高效地集中管理应用配置,实现实时更新推送,助力开发者轻松应对复杂多变的配置场景。本文将带你一步步完成SpringBoot项目与Apollo配置中心的整合,让你的应用配置管理如鱼得水。一
- 多租户架构未提供足够的租户安全培训和教育
图幻未来
网络安全
多租户架构下租户安全培训与教育的需求分析与解决方案引言随着云计算和大数据技术的飞速发展,多租户架构已成为企业数字化转型的重要基石。多租户架构允许一个应用程序实例为多个租户提供服务,从而降低了企业的运营成本。然而,这种架构也带来了一系列的安全挑战。为了解决这些问题,企业需要加强对租户的安全培训和教育,确保租户了解如何在使用多租户架构时保护自己的数据和应用程序。本文将探讨多租户架构下的租户安全培训和教
- 3步搞定:java分布式WebSocket与消息队列的奇妙邂逅?
墨瑾轩
一起学学Java【一】分布式websocket网络协议java
关注墨瑾轩,带你探索编程的奥秘!超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣嘿,亲爱的开发者们!今天我们要聊的是那个让分布式系统心跳加速的热门话题——如何用消息队列轻松实现分布式WebSocket。别急,我会一步步带你走进这个奇妙的世界,让你轻松掌握这门技艺。准备好了吗?让我们开始这场技术盛宴吧!引言在这个信息爆炸的时代,WebSoc
- 一文了解大数据概论
程序员
一.大数据概论1.1大数据概念大数据(bigdata):指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。主要解决,海量数据的存储和海量数据的分析计算问题。按顺序给出数据存储单位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。1Byte=8bit
- HBase-2.5.10 伪分布式环境搭建【Mac】
凡许真
hbase伪分布式zkmac
文章目录前言一、搭建单节点Zookeeper1.解压zookeeper2.配置环境变量3.修改配置文件4.启动zk二、搭建伪分布式Hbase1.解压hbase2.配置环境变量3.修改配置4.启动HBase前言搭建hbase伪分布式环境提示:以下是本篇文章正文内容,下面案例仅供参考一、搭建单节点Zookeeper1.解压zookeeper版本:3.8.02.配置环境变量vi~/.bash_profi
- Hadoop3.3.4伪分布式环境搭建
凡许真
分布式hadoop伪分布式hadoop3.3.4
文章目录前言一、准备1.下载Hadoop2.配置环境变量3.配置免密二、Hadoop配置1.hadoop-env.sh2.hdfs-site.xml3.core-site.xml4.mapred-site.xml5.yarn-site.xml三、格式化四、启动五、访问web页面前言hadoop学习——伪分布式环境——普通用户搭建一、准备1.下载Hadoop2.配置环境变量vi~/.bash_pro
- 【热门主题】000045 分布式数据库:技术演进与应用探索
宝码香车
热门主题数据库
前言:哈喽,大家好,今天给大家分享一篇文章!并提供具体代码帮助大家深入理解,彻底掌握!创作不易,如果能帮助到大家或者给大家一些灵感和启发,欢迎收藏+关注哦目录【热门主题】000045分布式数据库:技术演进与应用探索一、分布式数据库概述(一)定义与原理(二)发展历程二、数据一致性实现方法(一)传统方法与挑战(二)多种实现方案三、架构设计(一)MySQL常见架构1.搭建步骤2.复制原理3.优缺点(二)
- 【热门主题】000059 分布式数据库:技术演进与未来展望
宝码香车
热门主题数据库
前言:哈喽,大家好,今天给大家分享一篇文章!并提供具体代码帮助大家深入理解,彻底掌握!创作不易,如果能帮助到大家或者给大家一些灵感和启发,欢迎收藏+关注哦目录【热门主题】000059分布式数据库:技术演进与未来展望一、分布式数据库概述二、发展历程(一)传统单机数据库的局限(二)互联网时代的挑战与探索(三)分布式数据库的崛起三、核心技术(一)数据复制(二)数据分区(三)分布式事务四、架构类型(一)分
- Redis部署方式全解析:优缺点大对比
恩爸编程
redisredis数据库缓存redis部署方式对比redis部署介绍redis有几种部署方式redis怎样部署
Redis部署方式全解析:优缺点大对比一、引言Redis作为一款高性能的内存数据库,在分布式系统、缓存、消息队列等众多场景中都有着广泛的应用。选择合适的Redis部署方式,对于系统的性能、可用性、可扩展性以及成本等方面都有着至关重要的影响。本文将详细介绍Redis的几种常见部署方式,并对它们的优缺点进行全面对比。二、单机部署2.1原理单机部署是Redis最基础的部署方式,即将Redis服务安装在一
- 金融行业关系型数据库信创技术路线选型实践总结
罗伯特之技术屋
人工智能与智能系统专栏金融数据库
【摘要】数据库信创改造是当前金融领域信息化建设的迫切需求和难点之一。本文重点分析关系型数据库的国产化技术路线,从金融行业数据库国产化发展现状入手,分析了国产化集中式数据库与分布式数据库的特性对比,作者结合选型实践,重点介绍了基于PostgreSQL系列的国产集中式数据库实现和应用场景。该总结内容实用,虽立足于金融行业,其他行业用户也可以对照业务特点,撷取共性部分进行参考。1背景当前,随着数字化技术
- Enum用法
不懂事的小屁孩
enum
以前的时候知道enum,但是真心不怎么用,在实际开发中,经常会用到以下代码:
protected final static String XJ = "XJ";
protected final static String YHK = "YHK";
protected final static String PQ = "PQ";
- 【Spark九十七】RDD API之aggregateByKey
bit1129
spark
1. aggregateByKey的运行机制
/**
* Aggregate the values of each key, using given combine functions and a neutral "zero value".
* This function can return a different result type
- hive创建表是报错: Specified key was too long; max key length is 767 bytes
daizj
hive
今天在hive客户端创建表时报错,具体操作如下
hive> create table test2(id string);
FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. MetaException(message:javax.jdo.JDODataSto
- Map 与 JavaBean之间的转换
周凡杨
java自省转换反射
最近项目里需要一个工具类,它的功能是传入一个Map后可以返回一个JavaBean对象。很喜欢写这样的Java服务,首先我想到的是要通过Java 的反射去实现匿名类的方法调用,这样才可以把Map里的值set 到JavaBean里。其实这里用Java的自省会更方便,下面两个方法就是一个通过反射,一个通过自省来实现本功能。
1:JavaBean类
1 &nb
- java连接ftp下载
g21121
java
有的时候需要用到java连接ftp服务器下载,上传一些操作,下面写了一个小例子。
/** ftp服务器地址 */
private String ftpHost;
/** ftp服务器用户名 */
private String ftpName;
/** ftp服务器密码 */
private String ftpPass;
/** ftp根目录 */
private String f
- web报表工具FineReport使用中遇到的常见报错及解决办法(二)
老A不折腾
finereportweb报表java报表总结
抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、没有返回数据集:
在存储过程中的操作语句之前加上set nocount on 或者在数据集exec调用存储过程的前面加上这句。当S
- linux 系统cpu 内存等信息查看
墙头上一根草
cpu内存liunx
1 查看CPU
1.1 查看CPU个数
# cat /proc/cpuinfo | grep "physical id" | uniq | wc -l
2
**uniq命令:删除重复行;wc –l命令:统计行数**
1.2 查看CPU核数
# cat /proc/cpuinfo | grep "cpu cores" | u
- Spring中的AOP
aijuans
springAOP
Spring中的AOP
Written by Tony Jiang @ 2012-1-18 (转)何为AOP
AOP,面向切面编程。
在不改动代码的前提下,灵活的在现有代码的执行顺序前后,添加进新规机能。
来一个简单的Sample:
目标类:
[java]
view plain
copy
print
?
package&nb
- placeholder(HTML 5) IE 兼容插件
alxw4616
JavaScriptjquery jQuery插件
placeholder 这个属性被越来越频繁的使用.
但为做HTML 5 特性IE没能实现这东西.
以下的jQuery插件就是用来在IE上实现该属性的.
/**
* [placeholder(HTML 5) IE 实现.IE9以下通过测试.]
* v 1.0 by oTwo 2014年7月31日 11:45:29
*/
$.fn.placeholder = function
- Object类,值域,泛型等总结(适合有基础的人看)
百合不是茶
泛型的继承和通配符变量的值域Object类转换
java的作用域在编程的时候经常会遇到,而我经常会搞不清楚这个
问题,所以在家的这几天回忆一下过去不知道的每个小知识点
变量的值域;
package 基础;
/**
* 作用域的范围
*
* @author Administrator
*
*/
public class zuoyongyu {
public static vo
- JDK1.5 Condition接口
bijian1013
javathreadConditionjava多线程
Condition 将 Object 监视器方法(wait、notify和 notifyAll)分解成截然不同的对象,以便通过将这些对象与任意 Lock 实现组合使用,为每个对象提供多个等待 set (wait-set)。其中,Lock 替代了 synchronized 方法和语句的使用,Condition 替代了 Object 监视器方法的使用。
条件(也称为条件队列或条件变量)为线程提供了一
- 开源中国OSC源创会记录
bijian1013
hadoopsparkMemSQL
一.Strata+Hadoop World(SHW)大会
是全世界最大的大数据大会之一。SHW大会为各种技术提供了深度交流的机会,还会看到最领先的大数据技术、最广泛的应用场景、最有趣的用例教学以及最全面的大数据行业和趋势探讨。
二.Hadoop
&nbs
- 【Java范型七】范型消除
bit1129
java
范型是Java1.5引入的语言特性,它是编译时的一个语法现象,也就是说,对于一个类,不管是范型类还是非范型类,编译得到的字节码是一样的,差别仅在于通过范型这种语法来进行编译时的类型检查,在运行时是没有范型或者类型参数这个说法的。
范型跟反射刚好相反,反射是一种运行时行为,所以编译时不能访问的变量或者方法(比如private),在运行时通过反射是可以访问的,也就是说,可见性也是一种编译时的行为,在
- 【Spark九十四】spark-sql工具的使用
bit1129
spark
spark-sql是Spark bin目录下的一个可执行脚本,它的目的是通过这个脚本执行Hive的命令,即原来通过
hive>输入的指令可以通过spark-sql>输入的指令来完成。
spark-sql可以使用内置的Hive metadata-store,也可以使用已经独立安装的Hive的metadata store
关于Hive build into Spark
- js做的各种倒计时
ronin47
js 倒计时
第一种:精确到秒的javascript倒计时代码
HTML代码:
<form name="form1">
<div align="center" align="middle"
- java-37.有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接
bylijinnan
java
public class MaxCatenate {
/*
* Q.37 有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接,
* 问这n 个字符串最多可以连成一个多长的字符串,如果出现循环,则返回错误。
*/
public static void main(String[] args){
- mongoDB安装
开窍的石头
mongodb安装 基本操作
mongoDB的安装
1:mongoDB下载 https://www.mongodb.org/downloads
2:下载mongoDB下载后解压
 
- [开源项目]引擎的关键意义
comsci
开源项目
一个系统,最核心的东西就是引擎。。。。。
而要设计和制造出引擎,最关键的是要坚持。。。。。。
现在最先进的引擎技术,也是从莱特兄弟那里出现的,但是中间一直没有断过研发的
 
- 软件度量的一些方法
cuiyadll
方法
软件度量的一些方法http://cuiyingfeng.blog.51cto.com/43841/6775/在前面我们已介绍了组成软件度量的几个方面。在这里我们将先给出关于这几个方面的一个纲要介绍。在后面我们还会作进一步具体的阐述。当我们不从高层次的概念级来看软件度量及其目标的时候,我们很容易把这些活动看成是不同而且毫不相干的。我们现在希望表明他们是怎样恰如其分地嵌入我们的框架的。也就是我们度量的
- XSD中的targetNameSpace解释
darrenzhu
xmlnamespacexsdtargetnamespace
参考链接:
http://blog.csdn.net/colin1014/article/details/357694
xsd文件中定义了一个targetNameSpace后,其内部定义的元素,属性,类型等都属于该targetNameSpace,其自身或外部xsd文件使用这些元素,属性等都必须从定义的targetNameSpace中找:
例如:以下xsd文件,就出现了该错误,即便是在一
- 什么是RAID0、RAID1、RAID0+1、RAID5,等磁盘阵列模式?
dcj3sjt126com
raid
RAID 1又称为Mirror或Mirroring,它的宗旨是最大限度的保证用户数据的可用性和可修复性。 RAID 1的操作方式是把用户写入硬盘的数据百分之百地自动复制到另外一个硬盘上。由于对存储的数据进行百分之百的备份,在所有RAID级别中,RAID 1提供最高的数据安全保障。同样,由于数据的百分之百备份,备份数据占了总存储空间的一半,因而,Mirror的磁盘空间利用率低,存储成本高。
Mir
- yii2 restful web服务快速入门
dcj3sjt126com
PHPyii2
快速入门
Yii 提供了一整套用来简化实现 RESTful 风格的 Web Service 服务的 API。 特别是,Yii 支持以下关于 RESTful 风格的 API:
支持 Active Record 类的通用API的快速原型
涉及的响应格式(在默认情况下支持 JSON 和 XML)
支持可选输出字段的定制对象序列化
适当的格式的数据采集和验证错误
- MongoDB查询(3)——内嵌文档查询(七)
eksliang
MongoDB查询内嵌文档MongoDB查询内嵌数组
MongoDB查询内嵌文档
转载请出自出处:http://eksliang.iteye.com/blog/2177301 一、概述
有两种方法可以查询内嵌文档:查询整个文档;针对键值对进行查询。这两种方式是不同的,下面我通过例子进行分别说明。
二、查询整个文档
例如:有如下文档
db.emp.insert({
&qu
- android4.4从系统图库无法加载图片的问题
gundumw100
android
典型的使用场景就是要设置一个头像,头像需要从系统图库或者拍照获得,在android4.4之前,我用的代码没问题,但是今天使用android4.4的时候突然发现不灵了。baidu了一圈,终于解决了。
下面是解决方案:
private String[] items = new String[] { "图库","拍照" };
/* 头像名称 */
- 网页特效大全 jQuery等
ini
JavaScriptjquerycsshtml5ini
HTML5和CSS3知识和特效
asp.net ajax jquery实例
分享一个下雪的特效
jQuery倾斜的动画导航菜单
选美大赛示例 你会选谁
jQuery实现HTML5时钟
功能强大的滚动播放插件JQ-Slide
万圣节快乐!!!
向上弹出菜单jQuery插件
htm5视差动画
jquery将列表倒转顺序
推荐一个jQuery分页插件
jquery animate
- swift objc_setAssociatedObject block(version1.2 xcode6.4)
啸笑天
version
import UIKit
class LSObjectWrapper: NSObject {
let value: ((barButton: UIButton?) -> Void)?
init(value: (barButton: UIButton?) -> Void) {
self.value = value
- Aegis 默认的 Xfire 绑定方式,将 XML 映射为 POJO
MagicMa_007
javaPOJOxmlAegisxfire
Aegis 是一个默认的 Xfire 绑定方式,它将 XML 映射为 POJO, 支持代码先行的开发.你开发服 务类与 POJO,它为你生成 XML schema/wsdl
XML 和 注解映射概览
默认情况下,你的 POJO 类被是基于他们的名字与命名空间被序列化。如果
- js get max value in (json) Array
qiaolevip
每天进步一点点学习永无止境max纵观千象
// Max value in Array
var arr = [1,2,3,5,3,2];Math.max.apply(null, arr); // 5
// Max value in Jaon Array
var arr = [{"x":"8/11/2009","y":0.026572007},{"x"
- XMLhttpRequest 请求 XML,JSON ,POJO 数据
Luob.
POJOjsonAjaxxmlXMLhttpREquest
在使用XMlhttpRequest对象发送请求和响应之前,必须首先使用javaScript对象创建一个XMLHttpRquest对象。
var xmlhttp;
function getXMLHttpRequest(){
if(window.ActiveXObject){
xmlhttp:new ActiveXObject("Microsoft.XMLHTTP
- jquery
wuai
jquery
以下防止文档在完全加载之前运行Jquery代码,否则会出现试图隐藏一个不存在的元素、获得未完全加载的图像的大小 等等
$(document).ready(function(){
jquery代码;
});
<script type="text/javascript" src="c:/scripts/jquery-1.4.2.min.js&quo