- 最小费用最大流算法
Da_秀
CCFCSP题库训练CSP信奥赛知识点讲解算法开发语言数据结构动态规划图论c++
最小费用最大流算法原理问题:网络中有源点(起点)和汇点(终点),每条边有流量上限和单位流量费用。求:从源点到汇点的最大流量在流量最大的前提下,总费用最小核心思想:在找增广路时,选择单位费用之和最小的路径(使用SPFA找最短路)实现步骤建图:使用链式前向星存储(含反向边)正向边:容量cap,费用cost反向边:容量0,费用-cost算法流程:Step1:用SPFA找费用最短路(记录路径和最小流量)S
- bzoj 5168:[HAOI2014]贴海报 题解
Unlimied
分块bzoj---其他------OJ---题解bzojHAOI分块
5168:[HAOI2014]贴海报DescriptionBytetown城市要进行市长竞选,所有的选民可以畅所欲言地对竞选市长的候选人发表言论。为了统一管理,城市委员会为选民准备了一个张贴海报的electoral墙。张贴规则如下:1.electoral墙是一个长度为N个单位的长方形,每个单位记为一个格子;2.所有张贴的海报的高度必须与electoral墙的高度一致的;3.每张海报以“AB”表示,
- python画龙舟_BZOJ4891 TJOI2017龙舟(Polllard-Rho)
weixin_39688750
python画龙舟
对给定模数分解质因数后约分即可。依然常数巨大过不了。#include#include#include#include#include#includeusingnamespacestd;#definelllonglong#defineN10010chargetc(){charc=getchar();while((c'Z')&&(c'z')&&(c''))c=getchar();returnc;}ll
- Dijkstra算法进阶:如何处理负权边问题?
数据结构与算法学习
算法网络服务器ai
Dijkstra算法进阶:如何处理负权边问题?关键词:Dijkstra算法、负权边、最短路径、Bellman-Ford算法、SPFA算法摘要:Dijkstra算法是求解单源最短路径的经典算法,但它有一个“致命短板”——无法处理包含负权边的图。本文将从Dijkstra算法的底层逻辑出发,用“快递员送外卖”的生活案例解释负权边为何会让Dijkstra失效;接着拆解Bellman-Ford、SPFA等能
- 每日刷题列表
天马流星1
c++
2024年学习内容或题目难度知识点11.61.BLO蓝割点与桥2.树状数组1黄树状数组3.树状数组2黄树状数组11.71.学习树状数组2.楼兰图腾绿树状数组3.树状数组3黄~绿区间修改区间查询11.81.基本学完树状数组2.迷失的牛绿树状数组3.学习离散化4.数列离散化普及-离散化11.101.洛谷基础赛写题加订题三道红橙黄2.负环黄负环与差分约束系统3.逆序对黄树状数组11.111.圆桌骑士紫割
- 网工实验——OSPF配置
鸡哥爱技术
智能路由器网络
网络拓扑图配置1.为每个路由器配置接口(略)(详细见RIP实验)2.配置OSPFAR1[AR1]ospf[AR1-ospf-1]area1[AR1-ospf-1-area-0.0.0.1]network172.16.1.10.0.0.0#精确配置网络,也可以像下面那条命令那样配置[AR1-ospf-1-area-0.0.0.1]network192.168.1.00.0.0.255AR2[AR2]
- OSPF的拓展配置
古德赖可可
HCIP知识小记网络
OSPF的拓展配置1.OSPF的手工认证1.接口认证intg0/0/0ospfauthentication-modemd51cipher123456//123456:你自己配置的密码cipher:密文展示plain:明文显示2.区域认证----针对区域内的所有接口做接口认证[r2-ospf-1-area-0.0.0.0]authentication-modemd51cipher1234563.虚链
- Bellman-ford算法
可可亚
图论算法图论bellman–fordalgorithm
Bellman-ford算法解决的问题思路模版特定问题解决的问题最短路问题,时间复杂度为O(n∗m)O(n*m)O(n∗m),可以有负权边,一般情况下都是SPFA算法更加优越,一般只有一种情况下必须使用Bellman-ford算法,那就是限制到最小距离的边数k,其他情况下一般SPFA算法更加适用。思路对每条边都进行松弛操作n-1次,一点能实现最短路。松弛:例如一条边a->b,权值为w,那么dist
- Bellman-Ford算法,Bellman-Ford队列优化(SPFA)
hide_on-BUSh
算法数据结构
Bellman-Ford算法能解决负权的问题但不能解决负权回路的问题但是Bellman-Ford可以判断是否可以存在负环,同样的SPFA也可以判断负环的存在。Bellman-Ford主要是将每个点每一次都松弛while(b){b=false;for(inti=1;iq;intspfa(ints,intt){memset(vis,0,sizeof(vis));memset(dis,0x3f,size
- 算法笔记.spfa算法(bellman-ford算法的改进)
xin007hoyo
算法笔记数据结构
题目:(来源于AcWing)给定一个n个点m条边的有向图,图中可能存在重边和自环,边权可能为负数。请你求出1号点到n号点的最短距离,如果无法从1号点走到n号点,则输出impossible。数据保证不存在负权回路。输入格式第一行包含整数n和m。接下来m行每行包含三个整数x,y,z,表示存在一条从点x到点y的有向边,边长为z。输出格式输出一个整数,表示1号点到n号点的最短距离。如果路径不存在,则输出i
- 信息学奥赛一本通 1504:【例 1】Word Rings | 洛谷 SP2885 WORDRING - Word Rings
君义_noip
信息学奥赛一本通题解洛谷题解信息学奥赛C++图论算法
【题目链接】ybt1504:【例1】WordRings洛谷SP2885WORDRING-WordRings【题目考点】1.图论:SPFA_DFS判断负环SPFA_DFS算法Bellman-Ford算法栈优化,也称SPFA_DFS算法。主要用于寻找图中是否存在负环或正环。以判断负环为例:将dis数组每个元素初值设为0尝试从每个顶点出发调用SPFA_DFS算法。如果访问到还在搜索过程中(在栈内)的顶点
- 【BZOJ】1419 Red is good
weixin_34129696
【算法】期望DP【题解】其实把状态表示出来就是很简单的期望DP。f[i][j]表示i张红牌,j张黑牌的期望。i=0时,f[0][j]=0。j=0时,f[i][0]=i。f[i][j]=max(0,i/(i+j)*(f[i-1][j]+1)+j/(i+j)*(f[i][j-1]-1))。直接使用期望定义式E(X)=Σpi*xi不四舍五入就是在后一位-5。空间限制必须用递推+滚动数组。#include
- 【BZOJ】1419 Red is Good
Pure_W
BZOJ
大意:桌面上有R张红牌和B张黑牌,随机打乱顺序后放在桌面上,开始一张一张地翻牌,翻到红牌得到1美元,黑牌则付出1美元。可以随时停止翻牌,在最优策略下平均能得到多少钱直接期望DPf[i][j]表示开一局i红j黑的游戏的期望收益,然后f[i][j]可以由f[i-1][j]和f[i][j-1]转移要滚动#include#include#definecintconstint&usingnamespaces
- BZOJ 1419: Red is good(期望DP)
AbEver
BZOJ期望&概率DP&记忆化搜索
题目描述权限传送门题解比较水的期望DP,但也让我悟到了一点关于期望的东西。题目描述得不可描述,看起来逼格很高。但平均就是期望,关键是最优策略这点。根据我幼稚的理解,期望是均值没错,但期望之所以叫期望是因为它在预知未来,当前这个状态期望的得分就是作出决策后未来能得到分数的均值。所以或许这就是期望DP的状态要倒过来推的原因吧。考虑f[i][j]为剩下i张红牌j张黑牌的在最优策略下的期望。根据我脚推的式
- 【图论】bellman-ford 算法 + spfa 算法(基于队列优化)单源最短路(code c++)
idiot5liev
图论算法图论bellman–fordalgorithmc++spfa链式前向星
目录&索引一、前言题目二、算法原理bellman-ford、spfa算法关系spfa算法通俗介绍三、程序代码朴素bellman-fordcodec++spfacodec++四、结论一、前言图为点和边的集合边方向->有向无向边边权值->是否有负权边以及边是否成环,对点来说的出入度存图方式邻接矩阵邻接表链式前向星最短路径算法floyd——多源,时间复杂度O(n^3)dijkstra——单源,推荐因为快
- 算法系列——四种最短路算法:Floyd,Dijkstra,Bellman-Ford,SPFA
ITString
经验之谈java算法数据结构
写在前面:好久没有更新博客了,距离上一次更新已经过去了十一个月了,一是因为课业繁重,二是因为这一年中接了不少项目。其实早就想写写算法和数据结构相关的文章了,之前在Coders群里也说过17年要多写写算法和数据结构,奈何计划赶不上变化,实在是没有工夫写。现在到了18年了,最近刚放寒假,数据科学导论实验今天交上了最后一个,总算是有些闲工夫了,准备写些东西却又不知道应该写什么,算法那么多,从哪个写起呢?
- NO.95十六届蓝桥杯备战|图论基础-单源最短路|负环|BF判断负环|SPFA判断负环|邮递员送信|采购特价产品|拉近距离|最短路计数(C++)
ChoSeitaku
蓝桥杯备考蓝桥杯图论c++
P3385【模板】负环-洛谷如果图中存在负环,那么有可能不存在最短路。BF算法判断负环执⾏n轮松弛操作,如果第n轮还存在松弛操作,那么就有负环。#includeusingnamespacestd;constintN=2e3+10,M=3e3+10;intn,m;intpos;structnode{intu,v,w;}e[M*2];intdist[N];boolbf(){//初始化memset(di
- BZOJ 1639: [Usaco2007 Mar]Monthly Expense 月度开支【二分+贪心】
weixin_30367543
1639:[Usaco2007Mar]MonthlyExpense月度开支【题目描述】传送门【题解】二分答案,然后贪心check就可以了。代码如下#includeusingnamespacestd;intn,m,Ans,a[100005];boolcheck(intx){intSum=0,Now=1;for(inti=1;ix)return0;if(Sum+a[i]>1;L>1)if(check(
- BZOJ 1639: [Usaco2007 Mar]Monthly Expense 月度开支
AC_IS_DELIGHTFUL
BZOJsilverUSACO银组题二分答案
1639:[Usaco2007Mar]MonthlyExpense月度开支TimeLimit:5SecMemoryLimit:64MBSubmit:1052Solved:519[Submit][Status][Discuss]DescriptionFarmerJohn是一个令人惊讶的会计学天才,他已经明白了他可能会花光他的钱,这些钱本来是要维持农场每个月的正常运转的。他已经计算了他以后N(1#in
- 图论学习笔记(4):Bellman-ford算法和SPFA算法
sml259(劳改版)
算法数据库SPFABellman-ford
声明:这里简单聊聊我们Bellman-ford算法的思路,我也查了一些资料来进行辅助了解,我们主要掌握SPFA算法的思现,因为我们Bellman-ford算法的时间复杂度是稳定的O(VE)(其中V是顶点个数,E是边的个数),在大多数算法题目里这个时间复杂度已经很大了(打XCPC应该O(n^2)左右几乎都会卡)。而我们的SPFA算法平均情况下的时间复杂度是O(kE)(k是一个小于2的数),所以在大多
- 数学建模--图论与最短路径
不到w粉不改名
数学建模图论最短路径DijkstraFloyd算法Bellman-FordSPFA
目录图论与最短路径问题最短路径问题定义常用的最短路径算法Dijkstra算法Floyd算法Bellman-Ford算法SPFA算法应用实例结论延伸如何在实际应用中优化Dijkstra算法以提高效率?数据结构优化:边的优化:并行计算:稀疏矩阵和向量运算:代码优化:Floyd算法在处理多源最短路径问题时的具体实现步骤是什么?Bellman-Ford算法如何检测并处理负权边的图中的负环?SPFA算法与B
- (代码随想录)BEllman_ford算法 及其优化 SPFA
cq.gi
算法
代码随想录(知识提炼)Bellman_ford算法用处解决带负权值的单源最短路问题核心思想对所有边进行松弛n-1次操作(n为节点数量),从而求得目标最短路。何为松弛minDist[B]表示到达B节点最小权值,minDist[B]有哪些状态可以推出来?状态一:minDist[A]+value可以推出minDist[B]状态二:minDist[B]本身就有权值(可能是其他边链接的节点B例如节点C,以至
- 最短路径--SPFA算法
OYangxf
数据结构与算法算法图论数据结构
SPFA算法的引入实际上,SPFA算法其实是对Bellman-Ford算法的优化,它通过队列这种数据结构,使得在松弛操作时不会去遍历无关的边。SPFA算法的代码实现#include#include#includeusingnamespacestd;typedefpairPII;intn,m,cnt;intdis[105];intvis[105];ints;inthead[105];intuse[1
- 探索域名安全新境界:checkdmarc深度解析与应用推荐
幸竹任
探索域名安全新境界:checkdmarc深度解析与应用推荐checkdmarcAparserforSPFandDMARCDNSrecords项目地址:https://gitcode.com/gh_mirrors/ch/checkdmarc在数字化时代,电子邮件的安全性成为了企业及个人网络防护的重要一环。SPF(SenderPolicyFramework)、DMARC(Domain-basedMes
- 常见算法模板(python)
雨拾
python算法深度优先
常见算法模板(python)二分搜索(实数搜索、整数搜索)前缀和、差分数组深度优先搜索DFS宽度优先搜索BFS并查集树状数组线段树稀疏表动态规划(矩阵)快速幂字符串匹配算法-KMPFloyd算法Dijkstra算法Bellman-Ford算法SPFA算法Prim算法Kruskal算法二分搜索(实数搜索、整数搜索)#-*-coding:utf-8-*-#@Author:BYW-yuwei#@Soft
- 代码随想录第六十天| Bellman_ford 队列优化算法(又名SPFA) bellman_ford之判断负权回路 bellman_ford之单源有限最短路
kill bert
代码随想录算法训练营算法
Bellman-Ford队列优化算法(SPFA)精讲题目描述某国共有n个城市,通过m条单向道路连接。每条道路的权值为运输成本减去政府补贴。要求找出从城市1到城市n的最低运输成本路径,若成本为负则表示盈利,若无路径则输出“unconnected”。输入包含n和m,接着m行每行三个整数s、t、v,表示从s到t的道路权值为v。输出为最低成本或“unconnected”。输入输出示例输入:6756-212
- 图论--最短路算法
Dream_Maker_yangkai
c++图论算法知识点总结和梳理图论
图论–最短路算法–yangkai在解决最短路问题时,优秀的最短路算法是必不可少的工具在这里介绍几种实用的算法1Floyd2Dijkstra算法3Dijkstra+堆优化4Bellman-Ford5SPFA(ShortestPathFasterAlgorithm)0图的储存方式边目录(记下来,仅此而已)邻接矩阵(适合稠密图)邻接表(适合稀疏图)链式前向星(万能):从每一个点把与之相连的边拉成一条链用
- 图论算法之最短路径(Dijkstra、Floyd、Bellman-ford和SPFA)
HX_2022
数据结构与算法数据结构算法图论
图论算法之最短路径(Dijkstra、Floyd、Bellman-ford和SPFA)1、图论最短路径概述图论算法为了求解一个顶点到另一个顶点的最短路径,即如果从图中某一顶点(称为源点)到达另一顶点(称为终点)的路径可能不止一条,如何找到一条路径,使得沿此路径各边上的权值总和(即从源点到终点的距离)达到最小,这条路径称为最短路径(shortestpath)。最短路径有很多特殊的情况,包括有向图还是
- 第十四次CCF-CSP认证(含C++源码)
曦月逸霜
算法c++数据结构学习
第十四次CCF-CSP认证卖菜满分思路买菜满分思路再卖菜满分题解(差分约束)solution1(枚举correctbut超时)solution2(正解)卖菜题目链接满分思路就是模拟一下这个调整第二天菜价的过程,其中对于两种只有一个邻居的情况下做出调整,三个for循环分别处理输入,调整,输出#includeusingnamespacestd;constintN=1010;intyes[N],toda
- 代码随想录算法训练营第六十五天| 图论10
Rachela_z
算法图论
Bellman_ford队列优化算法(又名SPFA)代码随想录importcollectionsdefmain():n,m=map(int,input().strip().split())edges=[[]for_inrange(n+1)]for_inrange(m):src,dest,weight=map(int,input().strip().split())edges[src].append
- C/C++Win32编程基础详解视频下载
择善Zach
编程C++Win32
课题视频:C/C++Win32编程基础详解
视频知识:win32窗口的创建
windows事件机制
主讲:择善Uncle老师
学习交流群:386620625
验证码:625
--
- Guava Cache使用笔记
bylijinnan
javaguavacache
1.Guava Cache的get/getIfPresent方法当参数为null时会抛空指针异常
我刚开始使用时还以为Guava Cache跟HashMap一样,get(null)返回null。
实际上Guava整体设计思想就是拒绝null的,很多地方都会执行com.google.common.base.Preconditions.checkNotNull的检查。
2.Guava
- 解决ora-01652无法通过128(在temp表空间中)
0624chenhong
oracle
解决ora-01652无法通过128(在temp表空间中)扩展temp段的过程
一个sql语句后,大约花了10分钟,好不容易有一个结果,但是报了一个ora-01652错误,查阅了oracle的错误代码说明:意思是指temp表空间无法自动扩展temp段。这种问题一般有两种原因:一是临时表空间空间太小,二是不能自动扩展。
分析过程:
既然是temp表空间有问题,那当
- Struct在jsp标签
不懂事的小屁孩
struct
非UI标签介绍:
控制类标签:
1:程序流程控制标签 if elseif else
<s:if test="isUsed">
<span class="label label-success">True</span>
</
- 按对象属性排序
换个号韩国红果果
JavaScript对象排序
利用JavaScript进行对象排序,根据用户的年龄排序展示
<script>
var bob={
name;bob,
age:30
}
var peter={
name;peter,
age:30
}
var amy={
name;amy,
age:24
}
var mike={
name;mike,
age:29
}
var john={
- 大数据分析让个性化的客户体验不再遥远
蓝儿唯美
数据分析
顾客通过多种渠道制造大量数据,企业则热衷于利用这些信息来实现更为个性化的体验。
分析公司Gartner表示,高级分析会成为客户服务的关键,但是大数据分析的采用目前仅局限于不到一成的企业。 挑战在于企业还在努力适应结构化数据,疲于根据自身的客户关系管理(CRM)系统部署有效的分析框架,以及集成不同的内外部信息源。
然而,面对顾客通过数字技术参与而产生的快速变化的信息,企业需要及时作出反应。要想实
- java笔记4
a-john
java
操作符
1,使用java操作符
操作符接受一个或多个参数,并生成一个新值。参数的形式与普通的方法调用不用,但是效果是相同的。加号和一元的正号(+)、减号和一元的负号(-)、乘号(*)、除号(/)以及赋值号(=)的用法与其他编程语言类似。
操作符作用于操作数,生成一个新值。另外,有些操作符可能会改变操作数自身的
- 从裸机编程到嵌入式Linux编程思想的转变------分而治之:驱动和应用程序
aijuans
嵌入式学习
笔者学习嵌入式Linux也有一段时间了,很奇怪的是很多书讲驱动编程方面的知识,也有很多书将ARM9方面的知识,但是从以前51形式的(对寄存器直接操作,初始化芯片的功能模块)编程方法,和思维模式,变换为基于Linux操作系统编程,讲这个思想转变的书几乎没有,让初学者走了很多弯路,撞了很多难墙。
笔者因此写上自己的学习心得,希望能给和我一样转变
- 在springmvc中解决FastJson循环引用的问题
asialee
循环引用fastjson
我们先来看一个例子:
package com.elong.bms;
import java.io.OutputStream;
import java.util.HashMap;
import java.util.Map;
import co
- ArrayAdapter和SimpleAdapter技术总结
百合不是茶
androidSimpleAdapterArrayAdapter高级组件基础
ArrayAdapter比较简单,但它只能用于显示文字。而SimpleAdapter则有很强的扩展性,可以自定义出各种效果
ArrayAdapter;的数据可以是数组或者是队列
// 获得下拉框对象
AutoCompleteTextView textview = (AutoCompleteTextView) this
- 九封信
bijian1013
人生励志
有时候,莫名的心情不好,不想和任何人说话,只想一个人静静的发呆。有时候,想一个人躲起来脆弱,不愿别人看到自己的伤口。有时候,走过熟悉的街角,看到熟悉的背影,突然想起一个人的脸。有时候,发现自己一夜之间就长大了。 2014,写给人
- Linux下安装MySQL Web 管理工具phpMyAdmin
sunjing
PHPInstallphpMyAdmin
PHP http://php.net/
phpMyAdmin http://www.phpmyadmin.net
Error compiling PHP on CentOS x64
一、安装Apache
请参阅http://billben.iteye.com/admin/blogs/1985244
二、安装依赖包
sudo yum install gd
- 分布式系统理论
bit1129
分布式
FLP
One famous theory in distributed computing, known as FLP after the authors Fischer, Lynch, and Patterson, proved that in a distributed system with asynchronous communication and process crashes,
- ssh2整合(spring+struts2+hibernate)-附源码
白糖_
eclipsespringHibernatemysql项目管理
最近抽空又整理了一套ssh2框架,主要使用的技术如下:
spring做容器,管理了三层(dao,service,actioin)的对象
struts2实现与页面交互(MVC),自己做了一个异常拦截器,能拦截Action层抛出的异常
hibernate与数据库交互
BoneCp数据库连接池,据说比其它数据库连接池快20倍,仅仅是据说
MySql数据库
项目用eclipse
- treetable bug记录
braveCS
table
// 插入子节点删除再插入时不能正常显示。修改:
//不知改后有没有错,先做个备忘
Tree.prototype.removeNode = function(node) {
// Recursively remove all descendants of +node+
this.unloadBranch(node);
// Remove
- 编程之美-电话号码对应英语单词
bylijinnan
java算法编程之美
import java.util.Arrays;
public class NumberToWord {
/**
* 编程之美 电话号码对应英语单词
* 题目:
* 手机上的拨号盘,每个数字都对应一些字母,比如2对应ABC,3对应DEF.........,8对应TUV,9对应WXYZ,
* 要求对一段数字,输出其代表的所有可能的字母组合
- jquery ajax读书笔记
chengxuyuancsdn
jQuery ajax
1、jsp页面
<%@ page language="java" import="java.util.*" pageEncoding="GBK"%>
<%
String path = request.getContextPath();
String basePath = request.getScheme()
- JWFD工作流拓扑结构解析伪码描述算法
comsci
数据结构算法工作活动J#
对工作流拓扑结构解析感兴趣的朋友可以下载附件,或者下载JWFD的全部代码进行分析
/* 流程图拓扑结构解析伪码描述算法
public java.util.ArrayList DFS(String graphid, String stepid, int j)
- oracle I/O 从属进程
daizj
oracle
I/O 从属进程
I/O从属进程用于为不支持异步I/O的系统或设备模拟异步I/O.例如,磁带设备(相当慢)就不支持异步I/O.通过使用I/O 从属进程,可以让磁带机模仿通常只为磁盘驱动器提供的功能。就好像支持真正的异步I/O 一样,写设备的进程(调用者)会收集大量数据,并交由写入器写出。数据成功地写出时,写入器(此时写入器是I/O 从属进程,而不是操作系统)会通知原来的调用者,调用者则会
- 高级排序:希尔排序
dieslrae
希尔排序
public void shellSort(int[] array){
int limit = 1;
int temp;
int index;
while(limit <= array.length/3){
limit = limit * 3 + 1;
- 初二下学期难记忆单词
dcj3sjt126com
englishword
kitchen 厨房
cupboard 厨柜
salt 盐
sugar 糖
oil 油
fork 叉;餐叉
spoon 匙;调羹
chopsticks 筷子
cabbage 卷心菜;洋白菜
soup 汤
Italian 意大利的
Indian 印度的
workplace 工作场所
even 甚至;更
Italy 意大利
laugh 笑
m
- Go语言使用MySQL数据库进行增删改查
dcj3sjt126com
mysql
目前Internet上流行的网站构架方式是LAMP,其中的M即MySQL, 作为数据库,MySQL以免费、开源、使用方便为优势成为了很多Web开发的后端数据库存储引擎。MySQL驱动Go中支持MySQL的驱动目前比较多,有如下几种,有些是支持database/sql标准,而有些是采用了自己的实现接口,常用的有如下几种:
http://code.google.c...o-mysql-dri
- git命令
shuizhaosi888
git
---------------设置全局用户名:
git config --global user.name "HanShuliang" //设置用户名
git config --global user.email "
[email protected]" //设置邮箱
---------------查看环境配置
git config --li
- qemu-kvm 网络 nat模式 (四)
haoningabc
kvmqemu
qemu-ifup-NAT
#!/bin/bash
BRIDGE=virbr0
NETWORK=192.168.122.0
GATEWAY=192.168.122.1
NETMASK=255.255.255.0
DHCPRANGE=192.168.122.2,192.168.122.254
TFTPROOT=
BOOTP=
function check_bridge()
- 不要让未来的你,讨厌现在的自己
jingjing0907
生活 奋斗 工作 梦想
故事one
23岁,他大学毕业,放弃了父母安排的稳定工作,独闯京城,在家小公司混个小职位,工作还算顺手,月薪三千,混了混,混走了一年的光阴。 24岁,有了女朋友,从二环12人的集体宿舍搬到香山民居,一间平房,二人世界,爱爱爱。偶然约三朋四友,打扑克搓麻将,日子快乐似神仙; 25岁,出了几次差,调了两次岗,薪水涨了不过百,生猛狂飙的物价让现实血淋淋,无力为心爱银儿购件大牌
- 枚举类型详解
一路欢笑一路走
enum枚举详解enumsetenumMap
枚举类型详解
一.Enum详解
1.1枚举类型的介绍
JDK1.5加入了一个全新的类型的”类”—枚举类型,为此JDK1.5引入了一个新的关键字enum,我们可以这样定义一个枚举类型。
Demo:一个最简单的枚举类
public enum ColorType {
RED
- 第11章 动画效果(上)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Eclipse中jsp、js文件编辑时,卡死现象解决汇总
ljf_home
eclipsejsp卡死js卡死
使用Eclipse编辑jsp、js文件时,经常出现卡死现象,在网上百度了N次,经过N次优化调整后,卡死现象逐步好转,具体那个方法起到作用,不太好讲。将所有用过的方法罗列如下:
1、取消验证
windows–>perferences–>validation
把 除了manual 下面的全部点掉,build下只留 classpath dependency Valida
- MySQL编程中的6个重要的实用技巧
tomcat_oracle
mysql
每一行命令都是用分号(;)作为结束
对于MySQL,第一件你必须牢记的是它的每一行命令都是用分号(;)作为结束的,但当一行MySQL被插入在PHP代码中时,最好把后面的分号省略掉,例如:
mysql_query("INSERT INTO tablename(first_name,last_name)VALUES('$first_name',$last_name')");
- zoj 3820 Building Fire Stations(二分+bfs)
阿尔萨斯
Build
题目链接:zoj 3820 Building Fire Stations
题目大意:给定一棵树,选取两个建立加油站,问说所有点距离加油站距离的最大值的最小值是多少,并且任意输出一种建立加油站的方式。
解题思路:二分距离判断,判断函数的复杂度是o(n),这样的复杂度应该是o(nlogn),即使常数系数偏大,但是居然跑了4.5s,也是醉了。 判断函数里面做了3次bfs,但是每次bfs节点最多