- 本福特定律: 为什么银行存款、河流长度等集合的首位数字更容易出现 1 而不是 9?
go
银行存款、河流长度等数据的首位数字更容易出现1而不是9,这背后的数学原理是本福特定律(Benford'sLaw)。本福特定律的概述本福特定律(Benford'sLaw)又称首位数字定律,是一种描述自然生成数据中数字分布规律的统计学现象。该定律揭示了在多种实际数据集中,数字1-9作为首位数字出现的概率呈现特定规律性分布。数学表达式首位数字d出现的概率为:P(d)=log₁₀(1+1/d),其中d∈{
- 以量子“自相干—波函数”理论的破产奠基唯物唯一的《自然集合论》
留下一片云
科技
违背守恒定律-物质唯一性的“自相干即可改变衍射方向”思想实验:在接受屏光栅“电子落点处”继续开缝衍射。多级重复角度叠加后,按量子“波函数”理论,“电子只靠自相干,不需任何外部作用即可任意变向、返回”,“拔着自己的头发离开了地球”。唯心的经典骗术:“天机不可泄露”—“观察导致坍缩”。—————————自然集合论自然是融洽无矛盾的客观存在,唯物唯一。集合有统属,万物归自然。集合内性本善,逻辑/规则在集
- 4.4《光的折射》
耶柴
物理备课(八上)学习
教会什么:光的折射定律培养什么:课标:(二)运动和相互作用2.3声和光2.3.3通过实验,了解光的折射现象及其特点。例6通过光束从空气射入水(或玻璃)中的实验,了解光的折射现象及其特点。一、导入实验引入:茶碗+硬币【光的折射引入】光的折射引入_哔哩哔哩_bilibili(也可使用投影仪+纸杯+硬币,将角度调整为恰好看不到硬币的时候,加入水,通过折射便可以看到部分硬币。)我们可以观察到什么?(刚刚开
- 实验六 多cache一致性——监听协议_多核Cache一致性
weixin_39576336
实验六多cache一致性——监听协议
经过这么多篇文章的介绍,我们应该已经对Cache有一个比较清晰的认识。Cache会面临哪些问题,我们该怎么处理这些问题。现在我们讨论多核Cache一致性问题。在摩尔定律不太适用的今天,人们试图增加CPU核数以提升系统整体性能。这类系统称之为多核系统(简称MP,Multi-Processor)。我们知道每个CPU都有一个私有的L1Cache(不细分iCache和dCache)。假设一个2核的系统,我
- 二八定律学sed
m0_53747349
#linux知识库linux
sed(流编辑器)是一种强大的文本处理工具,常用于对输入流(文件或管道)进行基本的文本转换。初学者会有畏难情绪,但是我想这个命令的使用是遵循二八定律的,有一些最常见的命令,所以,在生产环境中,寻找什么是sed最常用的操作是有意义的:1.替换文本语法:s/原内容/替换内容/[选项]全局替换(每行所有匹配):sed's/old/new/g'file.txt替换第N次出现的匹配:sed's/old/ne
- 机器人技能列表
极梦网络无忧
杂谈机器人
一、机器人制作基础入门(一)机器人概述1.机器人的定义与分类2.机器人的发展历程与现状3.机器人在各领域的应用案例(二)必备工具与材料4.常用电子工具介绍(万用表、电烙铁等)5.机械加工工具(螺丝刀、钳子、扳手等)6.电子元件(电阻、电容、二极管等)7.结构材料(塑料、金属、木材等)二、电子电路基础(一)电路原理与设计8.电路基本概念(电流、电压、电阻等)9.欧姆定律与基尔霍夫定律10.简单电路设
- Deepseek:物理神经网络PINN入门教程
天一生水water
神经网络人工智能深度学习
一、物理信息网络(PINN)的概念与原理1.定义与来源物理信息网络(Physics-InformedNeuralNetworks,PINN)是一种将物理定律(如偏微分方程、守恒定律等)嵌入神经网络训练过程的深度学习方法。其核心思想是通过神经网络同时拟合观测数据并满足物理约束,从而解决传统数值方法难以处理的高维、噪声数据或复杂边界条件问题。来源:PINN起源于对传统数值方法局限性的改进需求(如网格生
- 数学:从宇宙密码到人工智能的核心语言
Acd_713
数学学习
——解析数学本质、历史演进与未来革命的3000年全景图一、数学本质论:宇宙的元语言1.1数学实在论的拓扑诠释根据丘成桐的卡拉比-丘流形理论,物理定律可表述为:MCY↪CPn满足c1(M)=0\mathcal{M}_{CY}\hookrightarrow\mathbb{C}\mathbb{P}^n\quad\text{满足}\quadc_1(\mathcal{M})=0MCY↪CPn满足c1(M)=
- 用物理信息神经网络(PINN)解决实际优化问题:全面解析与实践
青橘MATLAB学习
深度学习网络设计人工智能深度学习物理信息神经网络强化学习
摘要本文系统介绍了物理信息神经网络(PINN)在解决实际优化问题中的创新应用。通过将物理定律与神经网络深度融合,PINN在摆的倒立控制、最短时间路径规划及航天器借力飞行轨道设计等复杂任务中展现出显著优势。实验表明,PINN相比传统数值方法及强化学习(RL)/遗传算法(GA),在收敛速度、解的稳定性及物理保真度上均实现突破性提升。关键词:物理信息神经网络;优化任务;深度学习;强化学习;航天器轨道一、
- 太翌氏文化产业: AGI架构部署
太翌修仙笔录
deepseek第三代人工智能agi架构人工智能
在之前RGOA-重力算法等基础上,分析春秋历日盘排盘驱动行为的ai模式,是否达到AGI标准春秋历日盘排盘驱动行为的AI模式与AGI标准的对比分析一、RGOA-重力算法与春秋历日盘排盘的核心逻辑RGOA算法原理RGOA(GravitationalSearchAlgorithm)是一种基于物理引力定律的优化算法,通过模拟粒子在引力场中的运动来寻找最优解。其核心公式为:Fij=GmimjRij2+ϵ和a
- 电阻在电路中的不同作用及阻值选择详述
DeepGpt
器件选型硬件工程
一、电阻的常见作用限流(CurrentLimiting)描述:限制通过电路或元件的电流,保护器件(如LED)。特点:根据欧姆定律(R=V/I)计算阻值。阻值选择:取决于电流大小和电压降。分压(VoltageDivision)描述:与其他电阻串联,分担电压,提供特定电平。特点:常用于电位器或信号调整。阻值选择:根据分压比(Vout=Vin×R2/(R1+R2))计算。上拉/下拉(Pull-up/Pu
- 从单块巨石到星辰大海:分布式与微服务的本质思考
斗-匕
分布式微服务架构
一、分布式系统:宇宙观的代码映射1.核心命题的进化单机时代(1960s-2000s):冯·诺依曼架构的终极演绎,摩尔定律撑起性能天花板分布式觉醒(2000s-):CAP定理的启示——放弃"完美系统"的幻想,在妥协中寻找最优解2.分布式三定律物理定律:光速限制下的通信延迟不可消除经济定律:成本边际效应决定拆分粒度组织定律:康威定律的幽灵始终在场(系统架构≈组织架构)3.典型范式对比模式特征案例主从架
- 【人工智能】大模型的Scaling Laws(缩放定律),通过增加模型规模(如参数数量)、训练数据量和计算资源来提升模型性能。
本本本添哥
013-AIGC人工智能大模型人工智能深度学习机器学习
缩放定律(ScalingLaws)是人工智能领域中关于大模型性能提升的重要理论,其核心思想是通过增加模型规模(如参数数量)、训练数据量和计算资源来提升模型性能。这一理论最早由OpenAI在2020年提出,并在随后的研究中得到了广泛验证和应用。ScalingLaws就像是指导手册一样,告诉我们在构建和训练AI模型时应该注意什么,以最经济有效的方式得到最好的成果。这有助于推动技术进步的同时也促进了可持
- 思考–如何学习陌生的知识
后知后觉的先行者
思考学习
思考–如何学习陌生的知识面对新知识的学习,可以遵循以下系统化的方法,既提高效率又减少迷茫感:一、明确学习目标:打破“学什么都要学全”的误区核心原则二八定律:80%的实用场景只需掌握20%的核心知识。场景驱动:明确“学这个知识要解决什么问题?”(例如:学Python是为了数据分析还是自动化办公?)。快速定位重点通过行业标杆案例、岗位JD或技术文档,提取高频关键词(如“神经网络”之于AI、“API调用
- 单片机学习规划
鬼手点金
技术感悟单片机嵌入式硬件
学习单片机是一个系统化的过程,以下是一个合理的学习规划,帮助你从基础到进阶逐步掌握单片机开发技能。第一阶段:基础知识准备电子基础:学习电路基础知识:电阻、电容、电感、二极管、三极管等。掌握基本电路分析方法:欧姆定律、基尔霍夫定律等。了解数字电路基础:逻辑门、触发器、计数器等。C语言编程:学习C语言基础:数据类型、运算符、控制语句、函数、数组、指针等。熟悉C语言在嵌入式开发中的应用:位操作、结构体、
- 蓝桥杯 2022 Java 研究生省赛 3 题 质因数个数
菜鸟0088
蓝桥杯java职场和发展
importjava.util.Scanner;//1:无需package//2:类名必须Main,不可修改publicclassMain{publicstaticvoidmain(String[]args){Scannerscan=newScanner(System.in);//唯一分离定律任何一个数都可以被分解为两个质数相乘的形式//所以找质因数当一个数能longn=scan.nextLong
- Meta:基于数据关系的LLM高效预训练
大模型任我行
大模型-模型训练人工智能自然语言处理语言模型论文笔记
标题:Data-EfficientPretrainingwithGroup-LevelDataInfluenceModeling来源:arXiv,2502.14709摘要数据高效的预训练已显示出提高缩放定律的巨大潜力。本文认为有效的预训练数据应该在组级别进行管理,将一组数据点作为一个整体而不是独立的贡献者。为此,我们提出了一种新的数据高效预训练方法GroupLevelDataInfluenceMo
- 机器学习----奥卡姆剃刀定律
AI自修室
计算机视觉面试题机器学习人工智能
奥卡姆剃刀定律(Occam’sRazor)是一条哲学原则,通常表述为“如无必要,勿增实体”(Entitiesshouldnotbemultipliedbeyondnecessity)或“在其他条件相同的情况下,最简单的解释往往是最好的”。这一原则由14世纪的英格兰逻辑学家和神学家威廉·奥卡姆提出。它提倡在解释现象时,应尽量减少假设和复杂性,优先选择最简单的解释。奥卡姆剃刀定律对机器学习模型优化的启
- 《数字围城与看不见的手:网络安全的经济哲学简史》
安全
(楔子:从青铜铸币到数据流)公元前7世纪,吕底亚人将琥珀金铸成硬币,货币流动催生了人类的安全难题——如何防止赝品渗透经济血脉。2023年,某跨国电商平台因API接口漏洞,每秒有317个虚拟账户在暗网交易数字资产。这组跨越时空的数据揭示永恒定律:财富形态决定安全范式,防护技术永远比攻击手段晚进化0.618个黄金分割周期。一、数据资本论:生产要素的惊险跳跃当亚当·斯密凝视别针工厂时,他看到的劳动分工正
- 嵌入式硬件篇---数字电子技术中的逻辑运算
Ronin-Lotus
嵌入式硬件篇嵌入式硬件数字电子技术逻辑运算
、文章目录前言一、基本逻辑运算1.与运算(AND)符号真值表功能应用2.或运算(OR)符号真值表功能应用3.非运算(NOT符号真值表功能应用4.异或运算(XOR)符号真值表功能应用5.同或运算(XNOR)符号真值表功能应用二、组合逻辑运算1.与非(NAND)符号真值表特点应用2.或非(NOR)符号真值表特点应用3.三态逻辑(Tri-state)符号功能应用三、逻辑运算的扩展规则1.德摩根定律(De
- 第二个问题-阿西莫夫三定律的理解
释迦呼呼
AI一千问人工智能
阿西莫夫三定律是由科幻小说家艾萨克·阿西莫夫提出的机器人伦理准则,旨在确保机器人(或人工智能,AI)在与人类互动时,优先保护人类的安全和利益。这三个定律分别是:机器人不得伤害人类,或坐视人类受到伤害。机器人必须服从人类的命令,除非这些命令与第一定律相冲突。机器人必须保护自己,除非这种保护与前两个定律相冲突。以下从几个方面详细探讨如何理解这一定律:1.阿西莫夫三定律的本质:伦理框架而非技术规范阿西莫
- CPU多级缓存结构以及缓存一致性协议MESI
又菜又爱玩٩( ö̆ ) و
并发编程缓存硬件架构
CPU多级缓存结构现代CPU分为物理核和逻辑核,比如我们日常办公电脑常见的4核8线程,就是指的4个物理核、8个逻辑核。超线程的技术使得一个物理核可以同时做两件事,也就是执行两个线程,但是能真正执行两个线程的场景很少。Java中API获取的核数,就是指的逻辑核。CPU在摩尔定律的指导下以每18个月翻一番的速度在发展,然而内存和硬盘的发展速度远远不及CPU。现代CPU为了提升执行效率,减少CPU与内存
- 符号学习初学代码——从开普勒第三定律到万有引力定律
Merci美滋滋
学习python机器学习
备注PINN——physicsinformedneuralnetworkSR——symbolicregression代码详细分析见评论区链接一、SR_testimportnumpyasnpT=np.array([0.241,0.615,1,1.881,11.862]).reshape(-1,1)R=np.array([0.381,0.723,1,1.524,5.023]).reshape(-1,1
- Beyond Scaling Laws: Understanding Transformer Performance with Associative Memory
UnknownBody
LLMDailytransformer深度学习人工智能语言模型
本文是LLM系列文章,针对《BeyondScalingLaws:UnderstandingTransformerPerformancewithAssociativeMemory》的翻译。超越缩放定律:用联想记忆理解Transformer性能摘要1引言2相关工作3模型4新的能量函数5交叉熵损失6实验结果7结论摘要增大Transformer模型的大小并不总是能够提高性能。这种现象不能用经验缩放定律来解
- 什么是Scaling Laws(缩放定律);DeepSeek的Scaling Laws
ZhangJiQun&MXP
教学2024大模型以及算力2021论文人工智能自然语言处理神经网络语言模型深度学习
什么是ScalingLaws(缩放定律)ScalingLaws(缩放定律)在人工智能尤其是深度学习领域具有重要意义,以下是相关介绍及示例:定义与内涵ScalingLaws主要描述了深度学习模型在规模(如模型参数数量、训练数据量、计算资源等)不断扩大时,模型性能与这些规模因素之间的定量关系。它表明,在一定条件下,模型的性能会随着模型规模的增加而以某种可预测的方式提升,通常表现为模型的损失函数值随模型
- 斜面摩擦系数测量仪产品特点及参数介绍
milaiyiqi
测试工具功能测试
COF-05斜面摩擦系数仪是一种专门用于测量物体与表面之间摩擦系数的精密设备。它通过模拟不同倾斜角度下的滑动情况,来计算两个接触面之间的摩擦力大小,进而得出摩擦系数。这项技术在材料科学、工程学以及质量控制领域有着广泛的应用。工作原理斜面摩擦系数仪的基本工作原理基于牛顿力学定律,尤其是重力和摩擦力的相互作用。测试时,将待测样品放置于一个可以调节角度的斜面上,然后逐渐增加斜面的角度直到样品开始滑动。根
- 《电磁学》第十二章
请向我看齐
电机电控电机电磁
以下是《电磁学》第十二章的常见内容,以张三慧编著的《大学物理学电磁学(第3版)》为例:12.1电荷电荷是一种物质属性,有正、负电荷两类,同性相斥、异性相吸。起电方法包括摩擦起电,即电荷从一物体转移到另一物体;感应起电,即电荷在同一物体上移动。电荷守恒定律表明电荷不能创造,也不会自行消失,只能从一个物体转移到另一个物体,在整个过程中电荷的代数和守恒。电荷的量子化指物体带电量是基本电荷的整数倍。电荷具
- 【第15章:量子深度学习与未来趋势—15.1 量子计算基础与量子机器学习的发展背景】
再见孙悟空_
#【深度学习・探索智能核心奥秘】机器翻译自然语言处理计算机视觉量子计算人工智能深度学习机器学习
想象一下,你正在用ChatGPT生成一篇小说,突然它卡在"主角穿越虫洞"的情节上——这不是因为想象力枯竭,而是传统计算机的晶体管已经烧到冒烟。当前AI大模型的参数规模每4个月翻一番,但摩尔定律的终结让经典计算机的算力增长首次跟不上AI的进化速度。这时候,量子计算带着它的"超能力"登场了:1台50量子位的量子计算机,处理某些问题的速度可达超级计算机的1亿倍。这场算力革命,正在改写深度学习的游戏规则。
- CES 2025 NVIDIA Project DIGITS 与更多突破性发布全解析
新加坡内哥谈技术
人工智能科技生活自动化深度学习
每周跟踪AI热点新闻动向和震撼发展想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行!订阅:https://rengongzhineng.io/观看视频B站链接:【年尾特献:AI的规模定律(scalinglaw)和芯片业达到瓶颈了吗
- 基于泰勒展开改进的物理信息神经网络
天天酷科研
物理信息网络PINN神经网络人工智能深度学习
基于泰勒展开改进的物理信息神经网络一、引言1.1、研究背景和意义物理信息神经网络(PINN)作为一种结合物理模型和数据驱动的新型神经网络模型,近年来在科学计算和工程应用中展示了广泛的应用前景。PINN通过将物理定律嵌入到神经网络的损失函数中,能够在缺乏大量数据的情况下,有效地解决复杂的物理问题。这种方法不仅提高了模型的预测准确性,还增强了模型的泛化能力和解释性,因此在流体力学、材料科学、地球科学等
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla