- 数字人分身系统源码搭建定制化开发,支持OEM
在人工智能技术蓬勃发展的今天,数字人分身系统凭借其独特的交互性和广泛的应用场景,成为了众多企业和开发者关注的焦点。从虚拟主播、智能客服到数字员工,数字人分身系统正逐渐渗透到各个领域。本文将详细阐述数字人分身系统源码搭建与定制化开发的全流程,为技术爱好者和企业开发者提供全面的技术参考。一、数字人分身系统概述数字人分身系统是一个综合性的技术解决方案,它融合了计算机图形学、人工智能、语音识别与合成、自然
- 数智管理学(二十五)
虚谷23
数智管理学人工智能网络大数据企业数智化创业创新
三、动态资源优化的实现技术动态资源配置的实现离不开先进的技术支撑,以下几项技术是其关键要素:(一)数字孪生技术:虚拟映射真实资源1.虚拟模型构建与实时同步数字孪生技术通过传感器采集物理资源的各种数据,如设备的几何形状、物理特性、运行状态等,利用计算机图形学、建模技术和仿真技术,构建出与物理资源高度相似的虚拟模型。在智能工厂中,对于每一台生产设备,都可以建立对应的数字孪生模型,该模型不仅包括设备的外
- vtk和opencv和opengl直接的区别是什么?
only-lucky
opencv人工智能计算机视觉
简介VTK、OpenCV和OpenGL是三个在计算机图形学、图像处理和可视化领域广泛使用的工具库,但它们在功能、应用场景和底层技术上存在显著差异。以下是它们的核心区别和特点对比:1.核心功能与定位工具核心功能主要应用领域VTK(VisualizationToolkit)三维可视化&科学计算,提供高级渲染、体绘制、交互式可视化医学影像、地质建模、流体力学仿真OpenCV(OpenSourceComp
- WebGL&图形学总结(二)
GISer_Jinger
中大厂面试webgl前端javascript
一、简历中图形学与渲染相关内容梳理(一)专业技能中的图形学储备WebGL与Shader编程:掌握GPU渲染管线原理,能使用GLSL编写着色器,熟悉ShadowMapping、RTT等图形算法。三维引擎应用:熟练使用Three.js和Cesium.js,具备三维场景搭建与高效渲染能力。可视化技术:熟悉Canvas、SVG,掌握GPU加速渲染与主流三维引擎集成(如WebGL与Cesium结合)。(二)
- Perlin柏林噪音算法的Java实现
程序逐梦人
算法java开发语言Java
Perlin柏林噪音算法的Java实现柏林噪音是一种用于生成自然、有机和随机纹理的算法。它在计算机图形学、游戏开发和模拟领域中得到广泛应用。本文将介绍如何使用Java实现Perlin柏林噪音算法,并提供相应的源代码。Perlin柏林噪音算法的原理是基于一种平滑的插值方法,通过对不同频率和振幅的噪音值进行叠加,生成连续的随机值。以下是Java代码实现Perlin柏林噪音算法的示例:importjav
- 3D门锁门把模型设计的探索与实践
半清斋
本文还有配套的精品资源,点击获取简介:本文探讨了如何利用计算机图形学和3D建模技术设计逼真、实用且美观的门锁及门把手数字模型。涵盖了从设计到渲染的全过程,包括功能与安全性、材料与质感、细节处理、装配与动画、渲染后期处理以及文件格式的兼容性和标准化定制。同时,利用高级建模软件如Autodesk3dsMax或Blender,提供了详细的3D模型构建、编辑与优化方法。1.计算机图形学和3D建模技术应用在
- 贝塞尔曲线与动画效果:从基础到进阶
江卓尔
贝塞尔曲线动画效果三次贝塞尔二次贝塞尔HTML5Canvas
贝塞尔曲线与动画效果:从基础到进阶背景简介在计算机图形学中,贝塞尔曲线是一种用于设计光滑曲线的重要工具。在动画和游戏开发中,贝塞尔曲线经常被用来生成平滑的运动路径。本章节将深入探讨贝塞尔曲线在动画中的应用,以及如何在HTML5Canvas上模拟物理效果以增强动画的真实感。贝塞尔曲线的基础应用三次贝塞尔曲线需要四个控制点来定义其形状。在本章节中,作者通过一个环形移动对象的示例,向我们展示了三次贝塞尔
- C语言实现矩阵转置
人才程序员
C语言系列课程c语言矩阵算法开发语言后端软件工程软件构建
文章目录C语言实现矩阵转置1.什么是矩阵转置?2.矩阵转置的C语言实现2.1定义矩阵2.2转置矩阵2.3示例代码2.4代码解析3.运行示例4.总结C语言实现矩阵转置矩阵转置是线性代数中的一个基本操作,它将一个矩阵的行和列交换。在计算机中,矩阵转置常常用来处理数据结构的优化、图像处理、图形学等领域。在C语言中,实现矩阵转置相对简单。本文将详细介绍矩阵转置的概念、实现方法,并通过示例代码来帮助你理解矩
- 物理学中的群论:三维空间转动变换
AI天才研究院
AI大模型企业级应用开发实战Agent实战AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
物理学中的群论:三维空间转动变换1.背景介绍1.1问题的由来在物理学领域,特别是量子力学和相对论中,研究物体在空间中的运动是至关重要的。物体的位置、速度以及更深层次的内在性质都受到物理定律的严格规范。当讨论物体的旋转运动时,数学描述变得尤为重要。在三维空间中,物体的旋转可以通过一组称为“旋转矩阵”或者“欧拉角”的方式来精确描述。这些描述方式不仅在理论物理学中不可或缺,也是计算机图形学、机器人学、航
- 算法导论第十八章 计算几何:算法中的空间艺术
第十八章计算几何:算法中的空间艺术“几何学是描绘宇宙秩序的永恒诗篇。”——约翰内斯·开普勒计算几何将数学的优雅与算法的实用性完美结合,在计算机图形学、机器人导航和地理信息系统中扮演着关键角色。本章将带您探索几何问题的算法解决方案,从基础的点线关系到复杂的空间剖分,揭示算法如何理解和操纵我们的几何世界。18.1几何基础:点、线和多边形18.1.1几何对象的表示在计算几何中,我们使用简洁的数学结构表示
- 线性代数导引:附录:行列式几何解释
AGI大模型与大数据研究院
AI大模型应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍线性代数是数学中的一个重要分支,它研究的是向量空间和线性变换。在计算机科学中,线性代数被广泛应用于图形学、机器学习、数据挖掘等领域。行列式是线性代数中的一个重要概念,它可以用来求解线性方程组的解、计算矩阵的逆、判断矩阵是否可逆等问题。本文将介绍行列式的几何解释,帮助读者更好地理解行列式的概念和应用。2.核心概念与联系2.1向量的叉积向量的叉积是指两个向量的乘积得到的另一个向量。设向量$
- 分段贝塞尔曲线
士兵突击许三多
matlab基础贝塞尔曲线matlab贝塞尔曲线
分段贝塞尔曲线什么是分段贝塞尔曲线贝塞尔曲线是一种参数化曲线,广泛应用于计算机图形学和相关领域。分段贝塞尔曲线是将多条贝塞尔曲线连接起来形成的更复杂曲线,它能够表示比单条贝塞尔曲线更复杂的形状。基本概念单段贝塞尔曲线:由控制点和Bernstein基函数定义二次贝塞尔曲线(3个控制点)三次贝塞尔曲线(4个控制点)分段贝塞尔曲线:将多条贝塞尔曲线首尾相连C0连续:简单连接,曲线段在连接点处位置相同C1
- Matlab 点云加权最小二乘法优化
完美代码
matlab最小二乘法开发语言点云
Matlab点云加权最小二乘法优化随着计算机视觉和三维图形学的发展,点云数据的处理和分析变得越来越重要。点云是三维空间中由大量的点组成的数据集合,常用于描述物体的形状和表面几何信息。在点云处理中,经常需要使用迭代加权最小二乘法对点云数据进行拟合优化。本文将介绍使用Matlab实现点云迭代加权最小二乘法优化的方法,并提供相应的源代码。点云表达首先,我们需要将点云数据以合适的方式表示在Matlab中。
- 掌握贝塞尔曲线:计算机图形学中的艺术
Compass宁
本文还有配套的精品资源,点击获取简介:贝塞尔曲线是一种在计算机图形学中被广泛使用的参数曲线,由法国工程师皮埃尔·贝塞尔提出。它在设计、动画、游戏开发和路径规划等多领域有着重要应用。通过控制点定义形状,贝塞尔曲线可通过阶数不同的多项式表示,并通过DeCasteljau算法简化计算。在JavaScript环境中,使用贝塞尔曲线可以创建动态效果,并且贝塞尔曲线的源代码包可能包含必要的实现文件。掌握贝塞尔
- 三次贝塞尔曲线绘制与OpenGL实现
Aurora曙光
本文还有配套的精品资源,点击获取简介:三次贝塞尔曲线是计算机图形学中用于平滑插值和形状设计的重要数学模型,由四个控制点定义。本文将详细解释其基本原理、数学公式,并结合OpenGL的使用方法,探讨其在可视化领域的应用。通过实践操作和源代码分析,学习者将掌握绘制三次贝塞尔曲线的技能,并理解其在游戏开发、UI设计和3D建模中的重要性。1.三次贝塞尔曲线基础概念在计算机图形学领域中,三次贝塞尔曲线是构建光
- 线性代数导引:欧几里得空间
AI大模型应用实战
javapythonjavascriptkotlingolang架构人工智能
1.背景介绍线性代数作为计算机科学的基石之一,对人工智能、数据科学、计算机图形学等多个领域都有着深远的影响。本篇博客文章将从欧几里得空间的定义入手,逐步深入讲解线性代数中的核心概念和原理,并结合实际应用场景,展示其强大的计算能力和广泛的适用性。1.1线性代数与欧几里得空间线性代数主要研究线性方程组、向量空间、矩阵等数学工具,以及它们在解决实际问题中的应用。其中,欧几里得空间是线性代数中最为基础和重
- 怎么利用JS根据坐标判断构成单个多边形是否合法
小眼哥
GIS开发前端javascript前端开发语言
怎么利用JS根据坐标判断构成单个多边形是否合法引言在GIS(地理信息系统)、游戏开发、计算机图形学等领域,判断一组坐标点能否构成合法的简单多边形(SimplePolygon)是一个常见需求。合法多边形需要满足几何学上的基本规则,本文将详细介绍如何使用JavaScript实现这一判断。一、什么是合法的简单多边形合法的简单多边形需满足以下条件:顶点数量:至少3个顶点(非共线)闭合性:首尾顶点必须重合(
- A星算法AStarPAth实现2D、3D寻路
我在北京coding
算法unity
A星(A*)算法是一种广泛应用的路径搜索和寻路算法,尤其在游戏开发和图形学领域中,用于解决二维和三维空间中的导航问题。它结合了最佳优先搜索(如Dijkstra算法)和启发式搜索的优点,能够在保证找到最优路径的同时,有效地减少搜索空间,提高搜索效率。A*算法的核心在于它使用了一个评估函数来衡量从起点到目标点的估计成本,这个函数通常由两部分组成:实际代价(g(n))和预计未来代价(h(n))。实际代价
- OpenGL混合排序实例 - C/C++编写
DarcyCode
c语言c++算法C/C++
OpenGL混合排序实例-C/C++编写在计算机图形学中,混合(blending)是指将两个或多个颜色值按照一定的规则进行合成的过程。在OpenGL中,混合功能是通过混合方程式和混合因子来实现的。混合排序是一种优化技术,用于渲染多个透明物体时避免渲染顺序引起的不正确混合结果。本文将介绍如何使用OpenGL和C/C++编写一个简单的混合排序示例。首先,我们需要创建一个OpenGL窗口和渲染上下文。这
- 用Python实现AIGC驱动的3D模型生成:完整教程
AI天才研究院
ChatGPT计算AI大模型应用入门实战与进阶pythonAIGC3dai
用Python实现AIGC驱动的3D模型生成:完整教程关键词:AIGC、3D模型生成、Python、深度学习、计算机图形学、生成对抗网络、点云处理摘要:本文详细介绍了如何使用Python实现AIGC(人工智能生成内容)驱动的3D模型生成技术。我们将从基础概念出发,逐步深入讲解3D模型生成的原理、算法实现和实际应用。内容包括3D数据表示方法、生成模型架构设计、训练策略优化以及完整的Python实现代
- 轴对齐包围盒(AABB)和有向包围盒(OBB)介绍
hunjinYang
三维点云建模计算机视觉
基本概念OBB(OrientedBoundingBox)和AABB(Axis-AlignedBoundingBox)是计算机图形学和几何处理中常用的两种包围盒,用于快速估算几何体的空间范围,帮助进行碰撞检测、加速渲染、空间分割等任务。两者有不同的特性和应用场景。下面详细介绍它们的概念、特点以及使用场景。1.AABB(Axis-AlignedBoundingBox)AABB是轴对齐包围盒,其边缘与世
- 常用表示三维点云数据的文本格式——obj、ply、xyz...
hunjinYang
三维点云建模计算机视觉
1.xyz文件.xyz文件格式是一种常用于表示三维点云数据的简单文本格式,通常用于存储3D坐标(x,y,z)信息。它在领域如地理信息系统(GIS)、计算机图形学、3D扫描、激光雷达(LiDAR)等领域非常常见,尤其适合表示点云或散列的3D数据集。.xyz文件格式非常简单,只存储每个点的坐标信息,因此不具备颜色、法线或其他属性的描述。1.1格式结构.xyz文件通常是纯文本文件,每一行表示一个三维点的
- Voronoi 图与 Delaunay 三角剖分
hunjinYang
三维点云建模计算机视觉
Voronoi图与Delaunay三角剖分Voronoi图和Delaunay三角剖分是计算几何中的两个互补的概念,它们被广泛应用于三维建模、地理信息系统、计算机图形学等领域。两者有着紧密的联系,Delaunay三角剖分是Voronoi图的对偶(dual)结构。1.Voronoi图Voronoi图是一种空间划分方法,用于将平面或空间根据一组点分成若干个区域,每个区域都由一个特定的点控制。这些点称为生
- 计算机图形学——Games101深度解析_第二章
Somellllbody
图形渲染游戏程序
三维旋转的符号问题旋转矩阵的符号差异源于坐标系的手系规则和旋转方向定义。首先是我们最常规的绕着z轴旋转,这是右手系下的标准定义,符合"x轴转向y轴"的正方向。Rz(α)=(cosα−sinα00sinαcosα0000100001)\mathbf{R}_z(\alpha)=\begin{pmatrix}\cos\alpha&-\sin\alpha&0&0\\\sin\alpha&\cos\
- vue+threeJs 设置模型默认的旋转角度
资深前端之路
threeJsvue.jsjavascriptecmascript
嗨,我是小路。今天主要和大家分享的主题是“vue+threeJs设置模型默认的旋转角度”。今天主要对设置模型默认的旋转角度,来展示模型的视角。通常在一些3d模型展示的时候,可以用到。模型实例展示图1.Math.PI定义:这个返回一个圆周率的值,相当于3.1415926.......属性列表列表说明2.Quaternion定义:四元数,一个实数,三个虚数;在3D图形学中,四元数常用于表示物体的旋转。
- Vulkan:Vulkan深度缓冲与混合技术_2024-07-20_14-57-06.Tex
chenjj4003
游戏开发人工智能算法着色器python开发语言numpy
Vulkan:Vulkan深度缓冲与混合技术Vulkan深度缓冲基础深度缓冲的概念深度缓冲(DepthBuffer)是计算机图形学中用于解决场景中物体遮挡问题的一种技术。在Vulkan中,深度缓冲通常与深度测试(DepthTest)和深度写入(DepthWrite)一起使用,以确保只有更靠近观察者的像素被绘制到屏幕上。深度缓冲实质上是一个二维数组,每个元素对应屏幕上的一个像素,存储该像素在场景中的
- C++23 std::mdspan:多维数组处理新利器
码事漫谈
C++23c++23
文章目录引言C++23简介std::mdspan的定义与特点定义特点std::mdspan的优势零成本抽象的多维数据访问减少内存开销提高代码灵活性std::mdspan的应用场景科学计算图形学相关提案示例代码使用动态扩展使用静态和动态扩展总结引言在C++的发展历程中,每一个新版本都带来了一些令人瞩目的新特性,以提升语言的功能和开发效率。C++23也不例外,其中std::mdspan作为一个重要的新
- strassen算法 DeepMind的AlphaZero最快矩阵乘法的前身
中堂李1027
算法矩阵线性代数
strassen算法DeepMind的AlphaZero最快矩阵乘法的前身矩阵乘法是线性代数中最基础也是最重要的操作之一,广泛应用于科学计算、工程、计算机图形学、机器学习等领域。随着数据规模的不断扩大,如何高效地进行矩阵乘法成为研究的热点。本文将介绍传统的矩阵乘法方法以及一种经典的优化算法——Strassen算法,并探讨它们在4×4矩阵乘法中的应用。目录引言矩阵乘法基础传统矩阵乘法Strassen
- 图形学中的边界描述法BREP介绍
yuanpan
CAD图形渲染
BREP(BoundaryRepresentation,边界表示法)是三维几何建模中最核心的表示方法之一,尤其在CAD(计算机辅助设计)、CAE(计算机辅助工程)和3D图形处理领域应用广泛。以下从原理、结构、应用场景等方面详细解析:一、BREP的定义与核心思想基本概念:BREP通过描述物体的边界表面(面、边、顶点)来定义三维形状。物体的几何形状由其表面、边界的拓扑结构
- 【计算机图形学CG】虎书第一章——Introduction笔记
IncludeFun
信息可视化几何学游戏引擎图形渲染计算机视觉
1.1GraphicsAreas可以将图形学划分为不同的领域,核心领域有Modeling、Rendering、Animation三个:Modeling:Modelingdealswiththemathematicalspecificationofshapeandappearancepropertiesinawaythatcanbestoredonthecomputer.即Modeling将图形处理
- 解读Servlet原理篇二---GenericServlet与HttpServlet
周凡杨
javaHttpServlet源理GenericService源码
在上一篇《解读Servlet原理篇一》中提到,要实现javax.servlet.Servlet接口(即写自己的Servlet应用),你可以写一个继承自javax.servlet.GenericServletr的generic Servlet ,也可以写一个继承自java.servlet.http.HttpServlet的HTTP Servlet(这就是为什么我们自定义的Servlet通常是exte
- MySQL性能优化
bijian1013
数据库mysql
性能优化是通过某些有效的方法来提高MySQL的运行速度,减少占用的磁盘空间。性能优化包含很多方面,例如优化查询速度,优化更新速度和优化MySQL服务器等。本文介绍方法的主要有:
a.优化查询
b.优化数据库结构
- ThreadPool定时重试
dai_lm
javaThreadPoolthreadtimertimertask
项目需要当某事件触发时,执行http请求任务,失败时需要有重试机制,并根据失败次数的增加,重试间隔也相应增加,任务可能并发。
由于是耗时任务,首先考虑的就是用线程来实现,并且为了节约资源,因而选择线程池。
为了解决不定间隔的重试,选择Timer和TimerTask来完成
package threadpool;
public class ThreadPoolTest {
- Oracle 查看数据库的连接情况
周凡杨
sqloracle 连接
首先要说的是,不同版本数据库提供的系统表会有不同,你可以根据数据字典查看该版本数据库所提供的表。
select * from dict where table_name like '%SESSION%';
就可以查出一些表,然后根据这些表就可以获得会话信息
select sid,serial#,status,username,schemaname,osuser,terminal,ma
- 类的继承
朱辉辉33
java
类的继承可以提高代码的重用行,减少冗余代码;还能提高代码的扩展性。Java继承的关键字是extends
格式:public class 类名(子类)extends 类名(父类){ }
子类可以继承到父类所有的属性和普通方法,但不能继承构造方法。且子类可以直接使用父类的public和
protected属性,但要使用private属性仍需通过调用。
子类的方法可以重写,但必须和父类的返回值类
- android 悬浮窗特效
肆无忌惮_
android
最近在开发项目的时候需要做一个悬浮层的动画,类似于支付宝掉钱动画。但是区别在于,需求是浮出一个窗口,之后边缩放边位移至屏幕右下角标签处。效果图如下:
一开始考虑用自定义View来做。后来发现开线程让其移动很卡,ListView+动画也没法精确定位到目标点。
后来想利用Dialog的dismiss动画来完成。
自定义一个Dialog后,在styl
- hadoop伪分布式搭建
林鹤霄
hadoop
要修改4个文件 1: vim hadoop-env.sh 第九行 2: vim core-site.xml <configuration> &n
- gdb调试命令
aigo
gdb
原文:http://blog.csdn.net/hanchaoman/article/details/5517362
一、GDB常用命令简介
r run 运行.程序还没有运行前使用 c cuntinue 
- Socket编程的HelloWorld实例
alleni123
socket
public class Client
{
public static void main(String[] args)
{
Client c=new Client();
c.receiveMessage();
}
public void receiveMessage(){
Socket s=null;
BufferedRea
- 线程同步和异步
百合不是茶
线程同步异步
多线程和同步 : 如进程、线程同步,可理解为进程或线程A和B一块配合,A执行到一定程度时要依靠B的某个结果,于是停下来,示意B运行;B依言执行,再将结果给A;A再继续操作。 所谓同步,就是在发出一个功能调用时,在没有得到结果之前,该调用就不返回,同时其它线程也不能调用这个方法
多线程和异步:多线程可以做不同的事情,涉及到线程通知
&
- JSP中文乱码分析
bijian1013
javajsp中文乱码
在JSP的开发过程中,经常出现中文乱码的问题。
首先了解一下Java中文问题的由来:
Java的内核和class文件是基于unicode的,这使Java程序具有良好的跨平台性,但也带来了一些中文乱码问题的麻烦。原因主要有两方面,
- js实现页面跳转重定向的几种方式
bijian1013
JavaScript重定向
js实现页面跳转重定向有如下几种方式:
一.window.location.href
<script language="javascript"type="text/javascript">
window.location.href="http://www.baidu.c
- 【Struts2三】Struts2 Action转发类型
bit1129
struts2
在【Struts2一】 Struts Hello World http://bit1129.iteye.com/blog/2109365中配置了一个简单的Action,配置如下
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configurat
- 【HBase十一】Java API操作HBase
bit1129
hbase
Admin类的主要方法注释:
1. 创建表
/**
* Creates a new table. Synchronous operation.
*
* @param desc table descriptor for table
* @throws IllegalArgumentException if the table name is res
- nginx gzip
ronin47
nginx gzip
Nginx GZip 压缩
Nginx GZip 模块文档详见:http://wiki.nginx.org/HttpGzipModule
常用配置片段如下:
gzip on; gzip_comp_level 2; # 压缩比例,比例越大,压缩时间越长。默认是1 gzip_types text/css text/javascript; # 哪些文件可以被压缩 gzip_disable &q
- java-7.微软亚院之编程判断俩个链表是否相交 给出俩个单向链表的头指针,比如 h1 , h2 ,判断这俩个链表是否相交
bylijinnan
java
public class LinkListTest {
/**
* we deal with two main missions:
*
* A.
* 1.we create two joined-List(both have no loop)
* 2.whether list1 and list2 join
* 3.print the join
- Spring源码学习-JdbcTemplate batchUpdate批量操作
bylijinnan
javaspring
Spring JdbcTemplate的batch操作最后还是利用了JDBC提供的方法,Spring只是做了一下改造和封装
JDBC的batch操作:
String sql = "INSERT INTO CUSTOMER " +
"(CUST_ID, NAME, AGE) VALUES (?, ?, ?)";
- [JWFD开源工作流]大规模拓扑矩阵存储结构最新进展
comsci
工作流
生成和创建类已经完成,构造一个100万个元素的矩阵模型,存储空间只有11M大,请大家参考我在博客园上面的文档"构造下一代工作流存储结构的尝试",更加相信的设计和代码将陆续推出.........
竞争对手的能力也很强.......,我相信..你们一定能够先于我们推出大规模拓扑扫描和分析系统的....
- base64编码和url编码
cuityang
base64url
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StringWriter;
import java.io.UnsupportedEncodingException;
- web应用集群Session保持
dalan_123
session
关于使用 memcached 或redis 存储 session ,以及使用 terracotta 服务器共享。建议使用 redis,不仅仅因为它可以将缓存的内容持久化,还因为它支持的单个对象比较大,而且数据类型丰富,不只是缓存 session,还可以做其他用途,一举几得啊。1、使用 filter 方法存储这种方法比较推荐,因为它的服务器使用范围比较多,不仅限于tomcat ,而且实现的原理比较简
- Yii 框架里数据库操作详解-[增加、查询、更新、删除的方法 'AR模式']
dcj3sjt126com
数据库
public function getMinLimit () { $sql = "..."; $result = yii::app()->db->createCo
- solr StatsComponent(聚合统计)
eksliang
solr聚合查询solr stats
StatsComponent
转载请出自出处:http://eksliang.iteye.com/blog/2169134
http://eksliang.iteye.com/ 一、概述
Solr可以利用StatsComponent 实现数据库的聚合统计查询,也就是min、max、avg、count、sum的功能
二、参数
- 百度一道面试题
greemranqq
位运算百度面试寻找奇数算法bitmap 算法
那天看朋友提了一个百度面试的题目:怎么找出{1,1,2,3,3,4,4,4,5,5,5,5} 找出出现次数为奇数的数字.
我这里复制的是原话,当然顺序是不一定的,很多拿到题目第一反应就是用map,当然可以解决,但是效率不高。
还有人觉得应该用算法xxx,我是没想到用啥算法好...!
还有觉得应该先排序...
还有觉
- Spring之在开发中使用SpringJDBC
ihuning
spring
在实际开发中使用SpringJDBC有两种方式:
1. 在Dao中添加属性JdbcTemplate并用Spring注入;
JdbcTemplate类被设计成为线程安全的,所以可以在IOC 容器中声明它的单个实例,并将这个实例注入到所有的 DAO 实例中。JdbcTemplate也利用了Java 1.5 的特定(自动装箱,泛型,可变长度
- JSON API 1.0 核心开发者自述 | 你所不知道的那些技术细节
justjavac
json
2013年5月,Yehuda Katz 完成了JSON API(英文,中文) 技术规范的初稿。事情就发生在 RailsConf 之后,在那次会议上他和 Steve Klabnik 就 JSON 雏形的技术细节相聊甚欢。在沟通单一 Rails 服务器库—— ActiveModel::Serializers 和单一 JavaScript 客户端库——&
- 网站项目建设流程概述
macroli
工作
一.概念
网站项目管理就是根据特定的规范、在预算范围内、按时完成的网站开发任务。
二.需求分析
项目立项
我们接到客户的业务咨询,经过双方不断的接洽和了解,并通过基本的可行性讨论够,初步达成制作协议,这时就需要将项目立项。较好的做法是成立一个专门的项目小组,小组成员包括:项目经理,网页设计,程序员,测试员,编辑/文档等必须人员。项目实行项目经理制。
客户的需求说明书
第一步是需
- AngularJs 三目运算 表达式判断
qiaolevip
每天进步一点点学习永无止境众观千象AngularJS
事件回顾:由于需要修改同一个模板,里面包含2个不同的内容,第一个里面使用的时间差和第二个里面名称不一样,其他过滤器,内容都大同小异。希望杜绝If这样比较傻的来判断if-show or not,继续追究其源码。
var b = "{{",
a = "}}";
this.startSymbol = function(a) {
- Spark算子:统计RDD分区中的元素及数量
superlxw1234
sparkspark算子Spark RDD分区元素
关键字:Spark算子、Spark RDD分区、Spark RDD分区元素数量
Spark RDD是被分区的,在生成RDD时候,一般可以指定分区的数量,如果不指定分区数量,当RDD从集合创建时候,则默认为该程序所分配到的资源的CPU核数,如果是从HDFS文件创建,默认为文件的Block数。
可以利用RDD的mapPartitionsWithInd
- Spring 3.2.x将于2016年12月31日停止支持
wiselyman
Spring 3
Spring 团队公布在2016年12月31日停止对Spring Framework 3.2.x(包含tomcat 6.x)的支持。在此之前spring团队将持续发布3.2.x的维护版本。
请大家及时准备及时升级到Spring
- fis纯前端解决方案fis-pure
zccst
JavaScript
作者:zccst
FIS通过插件扩展可以完美的支持模块化的前端开发方案,我们通过FIS的二次封装能力,封装了一个功能完备的纯前端模块化方案pure。
1,fis-pure的安装
$ fis install -g fis-pure
$ pure -v
0.1.4
2,下载demo到本地
git clone https://github.com/hefangshi/f