- 【论文笔记】基于图神经网络的多视角视觉重定位 GRNet CVPR 2020 论文笔记
phy12321
相机重定位
GRNet:LearningMulti-viewCameraRelocalizationwithGraphNeuralNetworks驭势科技,北京大学机器感知重点实验室,北京长城航空测控技术研究所本文提出了一种使用多视角图像进行相机重定位的图神经网络。该网络可以使得不连续帧之间进行信息传递,相比于只能在相邻前后帧之间进行信息传递的序列输入和LTSM,其能捕获更多视角信息以进行重定位。因此LSTM
- 关于STC15W系列串口开发的踩坑
辰尘_星启
单片机嵌入式硬件驱动开发
关于STC15W系列的串口开发整体来说难度不大,但是存在非常多的细节,稍不留意就会踩坑,故此记录。该系列单片机只有1个串口(串口1),可以映射到三组引脚上,形成三个伪独立串口在发送上,和真正的三个串口区别不大,因为只是一个单线程的MCU,只需要每次发送时,切换AUXR1寄存器的状态在接收上,因为实际上只有一个串口,只能使用一个串口中断,当映射到引脚组A时,来自组B的数据将无法触发串口接收中断。此外
- Qt获取网络流量(调用Windows API)----StateReader系列
Sudouble
Qt学习笔记网络qt流量WindowsAPI
因自己的笔记本没有带CapLock和NumLock的灯,导致某一次输入密码一直出错。之前也找过类似的软件,当到了下载的时候开始犹豫不决,怕当时的程序留了后台,偷偷获取我的按键信息。于是下决心写个取电脑按键状态的程序。——此为背景借着此势,顺便想给这个程序开发些新功能,于是想到了这个。可是在网上找了很久都没有找到Qt相关获取网卡流量的内容。无意间找到了在用WindowsAPI获取流量的例子。因为需要
- Qt获取键盘按键事件(Windows API)----StateReader系列
Sudouble
Qt学习笔记按键QtWindowAPIC++全局热键
Qt对于系统底层,一直没有很好的支持,例如串口并口通信,还有我们经常都会用到的全局热键,等等。既然Qt可能出于某种原因,不对这些进行支持,我们就只能自己写代码,调用系统相关的API了。需求:获取CapsLock键的状态,并使程序在后台运行时能够及时得到CapsLock键的状态。方法有两种,一是注册全局热键(想法很好,可惜注册后这个键原先的功能就没了,不采用)。二是隔一段时间读取一次按键状态(很好用
- Qt5.7.0 mingw+qwtplot3D 编译
Sudouble
Qt学习笔记qt5qwtplot3d编译安装
一、基本编译问题在安装的过程中却遇到了很多的问题。咨询了Google中大量的帖子,发现按照他们说的方法根本没法解决我的实际问题。研究了整整宝几天,总算是编译通过,解决了所有的问题。下面将通过重现我的安装编译过程,及解决问题的方法来告诉大家如何才能正确的编译qwtplot3D开发库。1、从网上下载qwtplot3D的最新版本:http://qwtplot3d.sourceforge.net/2、解压
- 基于模糊RBF神经网络轨迹跟踪研究(Matlab代码实现)
@橘柑橙柠桔柚
神经网络matlabmvc
个人主页欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述2运行结果3参考文献4Matlab代码实现1概述模糊控制(FuzzyControl)是1965年,由美国的Zadeh率先创立了模糊集合论,后来又提出了模糊逻辑控制器的概念和有关定理。于1974年第一次组成了模糊逻辑控制器,并使用于锅炉和汽轮机的控制系统
- 笔记系列----逻辑备份和恢复 imp/exp/impdp/expdp
柠檬
oracle数据库sql
注:需要打开监听1.传统的导入导出exp/imp传统的导入导出程序是exp/imp,用于实施数据库的逻辑备份和恢复导出程序exp将数据库的对象定义和数据被分到一个二进制文件中导入程序imp将二进制中的对象定义和数据导入到数据库中导入导出程序特点:1)按时间保存2)允许导出指定表,并重新导入新的数据库中3)可以把数据库迁移到另外一台异构服务器上4)在2个不同版本的oracle之间的数据传输数据5)在
- 跟李沐学AI:视频生成类论文精读(Movie Gen、HunyuanVideo)
Landy_Jay
人工智能
MovieGen:ACastofMediaFoundationModels简介MovieGen是Meta公司提出的一系列内容生成模型,包含了3.2.1预训练数据MovieGen采用大约100M的视频-文本对和1B的图片-文本对进行预训练。图片-文本对的预训练流程与Meta提出的Emu:Enhancingimagegenerationmodelsusingphotogenicneedlesinaha
- OpenAI紧急加播:ChatGPT上新深度搜索,持续思考30分钟输出1万字,刷榜“人类最后的考试”
量子位
就在开源的DeepSeek-R1被整合进各路AI搜索工具之际,OpenAI临时举行小型发布会。4点27通知,8点开始直播。ChatGPT上新“DeepResearch”,把推理大模型的思考能力用于联网搜索。据介绍,DeepResearch功能可在数十分钟完成人类专家需要几个小时的复杂研究任务。在“人类最后的考试”上,DeepResearch刷新了最高分,比o3-mini高推理设置分数高出一倍。该测
- PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(NeuralODEs)是深度学习领域的创新性模型架构,它将神经网络的离散变换扩展为连续时间动力系统。与传统神经网络将层表示为离散变换不同,NeuralODEs将变换过程视为深度(或时间)的连续函数。这种方法为机器学习开创了新的研究方向,尤其在生成模型、时间序列分析和物理信息学习等领域具有重要应用。本文将基于Torchdyn(一个专门用于连续深度学习和平衡模型的PyTorch扩展库)
- 拼多多2025届校招开起,无拼不青春,欢迎加入!!!
愤怒的小青春
java
上海微电子装备SMEE社招C++面经流程:总共三面,一面是项目经理,二面是部门经理,三面是人力资源。公司是做光刻机整机的。部门是做硅片对专项练习训练营打卡第一天专项练习训练营打卡第一天实习大家好,我现在是大三暑假,刚刚找到一个实习Linux开发工程师,是第一份实习,现在有必要去吗?我在笔试专项训练营打卡第一天#牛客社群专项练习训练营#那是废物,宝宝~格力一面结构设计记录一下我紧张的人生第一面,面试
- Mixture of Experts(MoE)学习笔记
南七小僧
人工智能网站开发医疗器械研发学习笔记人工智能MoE大模型
1学习动机第一次了解到MoE(Mixtureofexperts),是在GPT-4模型架构泄漏事件,听说GPT-4的架构是8个GPT-3级别大小的模型以MoE架构(8*220B)组合成一个万亿参数级别的模型。不过在这之后开源社区并没有对MoE架构进行很多的探索,更多的工作还是聚焦在预训练新的大模型,在Llama2或其他模型上做Fine-tune,以及扩展大模型的ContextLength。12月8号
- 基于CNN(一维卷积Conv1D)+LSTM+Attention 实现股票多变量时间序列预测(PyTorch版)
矩阵猫咪
cnnlstmpytorch注意力机制卷积神经网络长短期记忆网络Attention
前言系列专栏:【深度学习:算法项目实战】✨︎涉及医疗健康、财经金融、商业零售、食品饮料、运动健身、交通运输、环境科学、社交媒体以及文本和图像处理等诸多领域,讨论了各种复杂的深度神经网络思想,如卷积神经网络、循环神经网络、生成对抗网络、门控循环单元、长短期记忆、自然语言处理、深度强化学习、大型语言模型和迁移学习。在深度学习的众多模型中,卷积神经网络(CNN)和长短期记忆网络(LSTM)因其独特的优势
- 题解 | #求小球落地5次后所经历的路程和第5次反弹的高度#
2301_78234743
java
无锡国企事业单位信息收集加比较找工作必看!互联网还是军工研究所,该如何选择?十三战腾讯京东校招两年,因言获罪被逼主动离职京东校招两年,因言获罪被逼主动离职携程/前端/秋招提前批/一二HR面面经(已意向书)测试开发工程师招聘58同城测试实习一面写在最后富途产品一面面经蚂蚁暑期实习推荐算法岗面经(已挂)快手推荐算法一面【找暑期实习ing】海信英语口语ai面试题目1(3分钟,单次录制3分钟内):跟读一段
- 大型语言模型(LLM)压缩技术:如何让庞然大物更轻巧?
空间机器人
LLM语言模型学习笔记语言模型人工智能自然语言处理
大型语言模型(LLM)压缩技术:如何让庞然大物更轻巧?随着大模型在各个领域的广泛应用,我们面临的一个核心问题是——如何让这些庞大的模型在硬件资源有限的环境下运行?这就需要我们运用一系列的技术来“压缩”这些模型,使其在保持精度的同时,能够适应不同的硬件设备。那么,LLM压缩到底是如何实现的呢?让我们从几个关键技术开始讲解:剪枝(Pruning)、知识蒸馏(KnowledgeDistillation)
- 蜗牛星际b款装服务器系统,记录下蜗牛星际更换系统硬盘重新安装系统的一番折腾...
轻喘
蜗牛星际b款装服务器系统
前言大概是去年双十一前的日子,终于想折腾下NAS,找了个廉价矿渣产品:蜗牛星际A款。到手的机器商家已经给装好了黑群辉,刚上手不适应,也就懒得折腾,网上找了下资料,同局域网电脑上下载了群辉助手,就开始用了然后闲鱼上买了个二手1T硬盘存无关紧要的电影之类的,某东上买了个6T企业级数据盘存重要的,迫于穷,没按照设想的计划买2块6T做raid。机器配置:J3455四核cpu,4G内存,i211单口网卡1G
- 【车间调度】基于卷积神经网络的柔性作业车间调度问题的两阶段算法(Matlab代码实现)
宇哥预测优化代码学习
cnn算法matlab
个人主页欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述两阶段算法概述第一阶段:特征提取与表示学习第二阶段:调度策略生成与优化研究挑战与前景2运行结果3参考文献4Matlab代码实现1概述该文提出一种基于卷积神经网络的有效两阶段算法,以求解具有机器故障的柔性作业车间调度问题(FJSP)。建立了以最大完成时间
- Golang 并发机制-5:详解syn包同步原语
梦想画家
#Golanggolang并发机制
并发性是现代软件开发的一个基本方面,Go(也称为Golang)为并发编程提供了一组健壮的工具。Go语言中用于管理并发性的重要包之一是“sync”包。在本文中,我们将概述“sync”包,并深入研究其最重要的同步原语之一:WaitGroups.sync包概述sync包是Go中的一个标准库包,为并发编程提供同步原语。它为开发人员提供了协调和同步程序的工具,确保安全有序地执行并发任务。sync包提供的一些
- M-Ped: Multi-Prompt Ensemble Decoding for Large Language Models
UnknownBody
LLMDailyLLMPromptprompt语言模型人工智能
本文是LLM系列文章,针对《M-Ped:Multi-PromptEnsembleDecodingforLargeLanguageModels》的翻译。M-Ped:大型语言模型的多提示集成解码摘要1引言2方法3实验4研究5相关工作6结论摘要随着大型语言模型(LLMs)在自然语言处理(NLP)领域的广泛应用,提高其性能已成为研究热点。本文提出了一种新的多提示集成解码方法,旨在通过利用多个提示的结果聚合
- Golang 学习路线 - Part 25:互斥锁(Mutex)
SunnyJim
golang学习路线MutexgoMutexgolangMutex
这里是Golang教程系列的第二十五部分。在本教程中,我们将学习互斥锁。我们还将学习如何使用互斥锁和channels来解决争用条件。关键部分在跳到互斥对象之前,理解并发编程中的临界区概念是很重要的。当一个程序并发运行时,修改共享资源的代码部分不应该被多个Goroutines同时访问。修改共享资源的这段代码称为临界段。例如,假设我们有一段代码,它使变量x增加1。x=x+1如果是单个的Goroutin
- SlimGPT: Layer-wise Structured Pruning for Large Language Models
UnknownBody
LLMDailyLLMPruning剪枝语言模型人工智能
本文是LLM系列文章,针对《SlimGPT:Layer-wiseStructuredPruningforLargeLanguageModels》的翻译。SlimGPT:大型语言模型的分层结构化修剪摘要1引言2相关工作3前言4方法5实验6结论摘要大型语言模型(LLM)因其在各个领域的卓越能力而受到广泛关注,其巨大的参数规模为实际部署带来了挑战。结构化修剪是一种平衡模型性能和效率的有效方法,但在计算资
- 【车间调度】基于卷积神经网络的柔性作业车间调度问题的两阶段算法(Matlab代码实现)
Ps.729
cnn算法matlab
个人主页欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述两阶段算法概述第一阶段:特征提取与表示学习第二阶段:调度策略生成与优化研究挑战与前景2运行结果3参考文献4Matlab代码实现1概述该文提出一种基于卷积神经网络的有效两阶段算法,以求解具有机器故障的柔性作业车间调度问题(FJSP)。建立了以最大完成时间
- 重磅|粉丝福利|专栏1.8|配电网|分布式能源的选址与定容系列
Ps.729
分布式能源
在苍穹之下飘逸时间的纺织机编织一年的篇章晨曦拂面,鸟语花香迎接黎明的曙光繁星坠落,夜色绵长盛装星空的宁静岁月如歌,时光飞逝2024留下足迹,2025将开启新篇章让我们心怀希望,展开美丽的画卷2025年,愿我们梦想绽放,心灵自由舒展以下全部资源文章末尾下载专栏1.8配电网、分布式能源的选址与定容系列【遗传算法、粒子群、改进遗传算法】基于智能算法的电力系统电网最优规划方案的研究(Matlab代码实现)
- BT-Basic编程系列--1--数据和变量
可可南木
BT-Basic语法pcb工艺
BT-Basic编程系列–1–数据和变量文章目录BT-Basic编程系列--1--数据和变量前言1.数据和变量1.1数据1.1.1数字1.1.2字符串1.2变量总结前言BT-Basic是一种用在AgilentHP3070(ICT,InCircuitTester在线测试仪)机器上的编程语言,现在Agilent已经改名为Keysight。它的语法与Basic相似,有点像早年的QBasic。主要是一种面
- 最小边际采样在分类任务中的应用
ningaiiii
机器学习与深度学习分类数据挖掘人工智能
最小边际采样在分类任务中的应用在机器学习的分类任务里,如何高效利用有限的标注数据,一直是研究的重点。最小边际采样(LeastMarginSampling)作为主动学习策略中的一种,为解决这一问题提供了独特的思路。本文将深入探讨最小边际采样在分类任务中的原理、应用以及优势与挑战。一、最小边际采样的原理最小边际采样的核心概念是基于模型预测概率来衡量样本的不确定性。在一个多分类问题中,模型会对每个样本预
- 图神经网络实战(2)——图论基础
盼小辉丶
图神经网络从入门到项目实战神经网络图论图神经网络GNN
图神经网络实战(2)——图论基础0.前言1.图属性1.1有向图和无向图1.2加权图和非加权图1.3连通图和非连通图1.4其它图类型2.图概念2.1基本对象2.2图的度量指标2.2邻接矩阵表示法3.图算法3.1广度优先搜索3.2深度优先搜索小结系列链接0.前言图论(Graphtheory)是数学的一个基本分支,涉及对图研究。图是复杂数据结构的可视化表示,有助于理解不同实体之间的关系。图论提供了大量建
- 多租户架构未提供统一的安全策略和框架,导致安全策略不一致
图幻未来
网络安全
多租户架构下的网络安全分析与AI技术应用在云计算和大数据技术的快速发展背景下,多租户架构已成为企业应用的首选。多租户架构允许多个独立的应用共享同一套基础架构和资源池,从而降低了企业的运营成本。然而,多租户架构在给企业带来便利的同时,也面临着一系列安全挑战。本文将围绕多租户架构未提供统一的安全策略和框架导致安全策略不一致的问题展开分析,并探讨AI技术在网络安全领域的应用场景。一、多租户架构下的安全挑
- 重磅|粉丝福利|专栏1.5| 状态估计|非侵入式负荷系列
稷下科研社
matlab
在苍穹之下飘逸时间的纺织机编织一年的篇章晨曦拂面,鸟语花香迎接黎明的曙光繁星坠落,夜色绵长盛装星空的宁静岁月如歌,时光飞逝2024留下足迹,2025将开启新篇章让我们心怀希望,展开美丽的画卷2025年,愿我们梦想绽放,心灵自由舒展所有资源文章末尾下载专栏1.5状态估计、非侵入式负荷系列【状态估计】基于随机方法优化PMU优化配置(Matlab代码实现)【状态估计】基于PMU的多回路配电系统状态估计(
- 基于粒子群优化算法的微电网调度(光伏、储能、电动车、电网交互)(Matlab代码实现)
宇哥预测优化代码学习
matlab
欢迎来到本博客❤️❤️❤️本文目录如下:⛳️⛳️⛳️目录1概述1.微电网概述2.粒子群优化算法(PSO)3.应用于微电网调度的优势4.研究内容光伏发电调度储能系统调度电动车充电调度与主电网交互5.实现挑战结论2基于粒子群算法的微电网调度结果4写在最后5Matlab代码实现1概述微电网(Micro-Grid)日前经济调度问题是指考虑电网的分时电价基础上,对常规负荷、光伏出力、电动车出力进行日前(未来
- spring源码阅读系列文章目录
master-dragon
#springspringjava后端
对于spring认识首先要了解spring相关概念术语,然后是如下的几句话牢记并反射出来:Bean怎么来的,通过BeanDefinitionBeanDefinition有Spring框架内置的,有手动定义或者自动配置扫描出来的(写个Demo工程)BeanFactoryPostProcessor可干预BeanDefinition,BeanPostProcessor可干预Bean的生命周期aop怎么实
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite