- 《卷积神经网络到Vision Transformer:计算机视觉的十年架构革命》
HeartException
人工智能学习
前言前些天发现了一个巨牛的人工智能免费学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站题目《卷积神经网络到VisionTransformer:计算机视觉的十年架构革命》展开深度解析,全文采用技术演进史+架构对比+产业影响的三段式结构,附关键数据与趋势预测:卷积神经网络到VisionTransformer:计算机视觉的十年架构革命副标题:从局部感知到全局建模,一场改变AI视觉基石的
- 目标检测:从基础原理到前沿技术全面解析
随机森林404
计算机视觉目标检测人工智能计算机视觉
引言在计算机视觉领域,目标检测是一项核心且极具挑战性的任务,它不仅要识别图像中有什么物体,还要确定这些物体在图像中的具体位置。随着人工智能技术的快速发展,目标检测已成为智能监控、自动驾驶、医疗影像分析等众多应用的基础技术。本文将全面介绍目标检测的基础概念、发展历程、关键技术、实践应用以及未来趋势,为读者提供系统性的知识框架。第一章目标检测概述1.1目标检测的定义与重要性目标检测(ObjectDet
- 【LangChain编程:从入门到实践】LangChain与其他框架的比较
AI天才研究院
AgenticAI实战计算AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
【LangChain编程:从入门到实践】LangChain与其他框架的比较1.背景介绍1.1人工智能发展现状在当今时代,人工智能(AI)已经成为科技领域中最热门和最具革命性的话题之一。随着计算能力的不断提升和算法的持续优化,AI系统正在不断扩展其应用范围,包括自然语言处理、计算机视觉、决策系统等各个领域。1.2LangChain概述在这种背景下,LangChain作为一个新兴的AI框架应运而生。L
- PHP接单涨薪系列(九)之计算机视觉实战:PHP+Stable Diffusion接单指南(2025高溢价秘籍)
攻城狮凌霄
PHPPHP接单涨薪AIphp计算机视觉stablediffusion
案例场景某电商公司使用本方案后,产品图制作成本降低90%,广告转化率提升35%,单月节省设计费用超¥80,000。本文将彻底解密如何用PHP+AI视觉技术接取高单价设计外包,让你在竞争激烈的市场中脱颖而出!一、视觉设计市场的AI革命1.1传统设计vsAI设计设计任务传统流程AI流程需求沟通初稿设计反复修改最终交付AI生成微调即时交付2025年设计市场数据对比:指标传统设计AI设计提升幅度单图制作时
- CppCon 2018 学习:RAPID PROTOTYPING OF GRAPHICS SHADERS IN
虾球xz
CppCon学习c++开发语言
这段内容在讲**着色器(Shader)**的基础概念,尤其是它在现代GPU(图形处理单元)中的作用。以下是逐条解释与理解:“Depictingdepthperceptionin3Dmodelsorillustrationsbyvaryinglevelsofdarkness”—Wikipedia这是**光照/阴影(shading)**的定义,来自维基百科。意思是:为了在二维图像中表现三维感,我们通过
- 纹理贴图算法研究论文综述
点云SLAM
算法图形图像处理算法纹理贴图计算机图形学计算机视觉人工智能虚拟现实(VR)纹理贴图算法综述
纹理贴图(TextureMapping)是计算机图形学和计算机视觉中的核心技术,广泛应用于三维重建、游戏渲染、虚拟现实(VR)、增强现实(AR)等领域。对其算法的研究涵盖了纹理生成、映射、缝合、优化等多个方面。1.引言纹理贴图是指将二维图像纹理映射到三维几何表面上,以增强模型的视觉真实感。传统方法主要关注静态几何模型上的纹理生成与映射,而近年来,随着多视角图像重建、RGB-D扫描、神经渲染的发展,
- ConvNeXT:面向 2020 年代的卷积神经网络
摘要视觉识别的“咆哮二十年代”始于VisionTransformer(ViT)的引入,ViT很快取代了ConvNet,成为图像分类任务中的最新最强模型。然而,vanillaViT在应用于目标检测、语义分割等通用计算机视觉任务时面临困难。HierarchicalTransformer(如SwinTransformer)重新引入了若干ConvNet的先验知识,使Transformer成为实用的通用视觉
- 深度学习前置知识全面解析:从机器学习到深度学习的进阶之路
一、引言:人工智能时代的核心技术在当今这个数据爆炸的时代,人工智能(AI)已经成为推动社会进步的核心技术之一。作为AI领域最重要的分支,深度学习(DeepLearning)在计算机视觉、自然语言处理、语音识别等领域取得了突破性进展,彻底改变了我们与机器交互的方式。本教案将从机器学习的基础知识出发,系统性地介绍深度学习的核心概念、数学基础、网络架构和训练方法,为读者构建完整的知识体系框架。无论你是刚
- PyTorch实战:从零构建CNN模型,轻松搞定MNIST手写数字识别
PyTorch实战:从零构建CNN模型,轻松搞定MNIST手写数字识别大家好!欢迎来到我的深度学习博客!对于每个踏入计算机视觉领域的人来说,MNIST手写数字识别就像是编程世界的“Hello,World!”。它足够简单,能够让我们快速上手;也足够完整,可以帮我们走通一个深度学习项目的全流程。之前我们可能用Keras体验过“搭积木”式的快乐,今天,我们将换一个同样强大且灵活的框架——PyTorch,
- 计算机视觉中的Transformer:ViT模型详解与代码实现
AI大模型应用工坊
计算机视觉transformer人工智能ai
计算机视觉中的Transformer:ViT模型详解与代码实现关键词:计算机视觉、Transformer、ViT、自注意力机制、图像分块摘要:传统卷积神经网络(CNN)统治计算机视觉领域多年,但2020年一篇《AnImageisWorth16x16Words:TransformersforImageRecognitionatScale》的论文打破了这一格局——它将NLP领域的Transformer
- 《YOLO11的ONNX推理部署:多语言多架构实践指南》
空云风语
YOLO人工智能深度学习目标跟踪人工智能计算机视觉YOLO
引言:YOLO11与ONNX的相遇在计算机视觉的广袤星空中,目标检测始终是一颗耀眼的明星,其在自动驾驶、智能安防、工业检测、医疗影像分析等诸多领域都有着举足轻重的应用。想象一下,自动驾驶汽车需要实时准确地检测出道路上的车辆、行人、交通标志;智能安防系统要快速识别出监控画面中的异常行为和可疑人员;工业生产线上,需要精准检测产品的缺陷;医疗影像分析中,辅助医生检测病变区域。这些场景都对目标检测技术的准
- 【CVPR2024】计算机视觉|即插即用|DFAM:marine!不懂DFAM,别说你会做水下动物分割!
论文地址:http://arxiv.org/pdf/2404.04996v1代码地址:https://github.com/Drchip61/Dual_SAM关注UPCV缝合怪,分享最计算机视觉新即插即用模块,并提供配套的论文资料与代码。https://space.bilibili.com/473764881摘要本研究提出了一种新颖的特征学习框架,名为**Dual-SAM,用于高性能的海洋动物分割
- Python与Dlib库实现人脸技术实战
西域情歌
本文还有配套的精品资源,点击获取简介:本项目详细说明了如何使用Python结合Dlib库实现人脸检测、识别、数量检测和距离检测。利用Dlib提供的机器学习算法和计算机视觉功能,包括HOG特征检测、级联分类器、面部特征向量模型和关键点预测等,项目能够快速准确地在图像中检测和识别人脸。此外,还介绍了如何统计图像中的人脸数量以及如何计算人脸之间的距离。通过实际代码资源,开发者能够掌握实时人脸技术的应用,
- 视觉表征和多模态融合
一只齐刘海的猫
语言模型
视觉表征和多模态融合是当前人工智能领域的研究热点,特别是在计算机视觉和自然语言处理的交叉领域。视觉表征是指将图像或视频信息转化为模型可以处理的向量形式,而多模态融合则是将不同类型的数据(如视觉、文本、音频等)进行整合,以实现更全面、准确的信息理解和处理。视觉表征(VisualRepresentation)目的:将图像或视频数据转化为深度学习模型可以理解的特征向量。方法:卷积神经网络(CNN):传
- 从0到1掌握OpenCV!Python图像处理实战全解析(附代码+案例)
小张在编程
Python学习opencvpython图像处理
引言你有没有想过,手机里的美颜滤镜如何精准识别五官?监控摄像头如何在人流中锁定可疑目标?医学影像软件如何从CT片中快速标注病灶?这些“神奇操作”的背后,往往藏着一个低调的“图像处理神器”——OpenCV。作为Python生态中最受欢迎的计算机视觉库,它用一行行代码将抽象的像素点变成可操作的“数字画布”。今天,我们就从最基础的图像读写开始,手把手带你解锁OpenCV的“十八般武艺”,从图像处理小白变
- 目标检测在国防和政府的应用实例
MzKyle
计算机视觉目标检测人工智能计算机视觉
一、目标检测技术概述目标检测是计算机视觉的核心任务,通过算法对图像/视频中的物体进行识别与定位,当前主流技术包括:经典算法:YOLO系列(实时性强)、FasterR-CNN(精度高)、SSD(平衡速度与精度)技术升级:结合深度学习(CNN、Transformer)、多模态融合(视觉+红外+雷达)、边缘计算实时处理二、国防领域核心应用实例(一)军事侦察与监控系统无人机侦察与目标识别应用场景:战术无人
- VLA模型
一介绍在机器人领域,视觉-语言-动作(VLA)模型的发展经历了显著的演变,这得益于计算机视觉和自然语言处理领域的进步。VLA模型代表了一类旨在处理多模态输入的模型,整合了来自视觉、语言和动作的信息。这些模型对于实现具身智能至关重要,使机器人能够理解物理世界并与之互动。以下是VLA模型发展的时间线:早期阶段:计算机视觉和自然语言处理的集成大约在2015年开始,随着视觉问答(VQA)系统的出现。这些系
- Random Erasing:计算机视觉的「隐形斗篷」——遮挡艺术的对抗学习革命
星光银河
深度学习-代表性技术主题/概念层面计算机视觉学习人工智能cnn神经网络深度学习
当ImageNet冠军模型在真实世界的遮挡面前崩溃时(识别准确率骤降38%),中科院自动化研究所2017年提出的RandomErasing技术以一纸惊艳了学界。这种在图像中随机挖洞的简单操作,让ResNet-50在Partial-iNaturalist数据集上抗遮挡能力提升4.2倍,错误率降低59%,揭示了模型鲁棒性的深层密码。️遮挡困境:视觉模型的阿喀琉斯之踵图像识别鲁棒性演化史时代技术Imag
- AI人工智能与自动驾驶的协同创新模式
AI大模型应用之禅
人工智能自动驾驶机器学习ai
AI人工智能与自动驾驶的协同创新模式关键词:人工智能、自动驾驶、协同创新、深度学习、计算机视觉、传感器融合、决策系统摘要:本文深入探讨了人工智能与自动驾驶技术的协同创新模式。我们将从基础概念出发,逐步分析AI如何赋能自动驾驶系统,涵盖感知、决策和控制三大核心模块。文章将通过生动的比喻解释复杂技术原理,展示实际代码实现,并探讨未来发展趋势和挑战。通过这篇文章,读者将全面理解AI与自动驾驶如何相互促进
- 基于 OpenCV 的图像 ROI 切割实现
一、引言在计算机视觉领域,我们经常需要处理各种各样的图像数据。有时候,我们只对图像中的某一部分区域感兴趣,例如在一张人物照片中,我们可能只关注人物的脸部。在这种情况下,将我们感兴趣的区域从整个图像中切割出来,不仅可以节省计算量,还能提高程序的运行速度。这就是我们所说的ROI(RegionofInterest,感兴趣区域)切割。二、ROI切割的原理2.1图像数据的存储在使用OpenCV进行图像读取时
- 一个简单的故事介绍极大似然估计
极大似然估计(MaximumLikelihoodEstimation,MLE)是一种在统计中用于估计参数的方法,其核心思想是找到使观测数据出现的概率最大的参数值。故事背景假设我们有一个不均匀的六面色子,但我们不知道每一面出现的真实概率。传统上,一个均匀的六面色子每一面出现的概率应该是1/6,但这个色子因为某些原因(比如制造上的误差)导致各面出现的概率不同。我们的任务是,通过投掷这个色子多次,来估计
- 【Python】车牌自动识别
幽兰的天空
Pythonpythonopencv
实现车牌自动识别(LicensePlateRecognition,LPR)是计算机视觉和深度学习领域中的一个常见任务。用Python和OpenCV,结合其他深度学习库,可以建立一个简单的车牌识别系统。以下是一个基于这两者的基本实现思路和示例代码。实现步骤环境准备:安装必要的库:bashpipinstallopencv-pythonopencv-python-headlessnumpypillowp
- Python和OpenCV实现车牌识别的毕业设计案例
媛源啊
本文还有配套的精品资源,点击获取简介:本项目通过Python和OpenCV库,实现了一个实用的车牌识别系统,包含图像捕获、预处理、车牌定位、车牌分割和字符识别等步骤。系统提供了一键运行的完整代码,使学生能够快速掌握计算机视觉和深度学习应用。遇到的挑战和解决方案也进行了讨论,比如光照变化、车牌角度不一致和污损的处理,以及数据增强技术和模型参数优化。1.车牌识别系统的基本理论和应用1.1车牌识别的背景
- 【大模型面试】大模型Prompt Engineer面试题及参考答案
大模型知识
prompt人工智能开发语言pythonchatgpt深度学习大模型
一、基础概念类1.什么是大模型?大模型通常指具有庞大参数规模的机器学习模型,尤其是在自然语言处理(NLP)和计算机视觉等领域。这些模型能够学习到大量数据中的复杂模式和特征,具备强大的泛化能力,可在多种任务上表现出色,如GPT系列、BERT等。2.大模型与传统机器学习模型的区别是什么?传统机器学习模型参数规模相对较小,往往针对特定任务进行设计和训练,需要较多人工特征工程。而大模型参数数量庞大,通过在
- AI产品经理技术篇:AI领域常用术语解析
让我看看好学吗
人工智能产品经理机器学习深度学习学习
作为AI产品经理,深入理解人工智能领域的核心术语是高效沟通、需求定义和产品落地的关键。无论是与算法工程师协作优化模型,还是向业务方解释技术方案,准确掌握专业术语能显著提升决策效率,避免因概念混淆导致的开发偏差。本文系统梳理了模型与算法、NLP(自然语言处理)、CV(计算机视觉)、数据处理、核心评估指标等领域的核心术语,帮助产品经理快速构建AI技术认知框架。目录1.基础概念2.模型与算法3.自然语言
- 【CVPR2025】计算机视觉|Salience DETR:显著性目标检测,精度暴涨!
论文地址:http://arxiv.org/pdf/2403.16131v1代码地址:https://github.com/xiuqhou/Salience-DETR关注UPCV缝合怪,分享最计算机视觉新即插即用模块,并提供配套的论文资料与代码。https://space.bilibili.com/473764881摘要本研究旨在解决类DETR方法中存在的计算负担重和对稳定查询选择依赖性高的问题。
- 图像分类:从基础原理到前沿技术
随机森林404
计算机视觉分类数据挖掘人工智能
引言在当今数字化时代,图像数据正以惊人的速度增长。从社交媒体上的照片分享到医疗影像诊断,从自动驾驶到工业质检,图像分类技术已经成为人工智能领域最基础也最重要的应用之一。本文将全面介绍图像分类的基础概念、发展历程、关键技术、应用场景以及未来趋势,帮助读者系统性地理解这一领域。第一章图像分类概述1.1什么是图像分类图像分类(ImageClassification)是计算机视觉中的一项核心任务,其目标是
- 《dlib库中的聚类》算法详解:从原理到实践
A小庞
算法算法聚类数据挖掘机器学习c++
一、dlib库与聚类算法的关联1.1dlib库的核心功能dlib是一个基于C++的机器学习和计算机视觉工具库,其聚类算法模块提供了多种高效的无监督学习工具。聚类算法在dlib中主要用于:数据分组:将相似的数据点划分为同一簇。特征分析:通过聚类结果发现数据潜在的结构。降维辅助:结合聚类结果进行特征选择或数据压缩。dlib支持的经典聚类算法包括K-Means和ChineseWhispers,适用于图像
- 基于深度学习的草莓成熟度检测系统:YOLOv5 + UI界面 + 数据集
YOLO实战营
深度学习YOLO实战项目深度学习YOLOui人工智能目标跟踪
引言随着农业科技的发展,智能化的农业生产方式正逐步替代传统农业。果实的成熟度检测对于农业生产的管理至关重要,尤其是在果蔬的采摘、分拣和运输过程中。草莓作为一种广泛种植且受消费者喜爱的水果,其成熟度检测一直是农业智能化的重要研究方向。传统的草莓成熟度检测方法大多依赖人工经验,劳动强度大且容易出现误差,因此,基于计算机视觉和深度学习的草莓成熟度自动检测系统成为了一种理想选择。深度学习技术,尤其是卷积神
- 【人工智能】 AI的进化之路:大模型如何重塑技术格局
蒙娜丽宁
Python杂谈人工智能人工智能python
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界本文深入探讨了人工智能大模型的进化历程及其对技术格局的深远影响。从早期神经网络到现代大模型的突破,文章分析了关键技术进步,如Transformer架构、预训练机制和分布式计算。结合数学公式和代码示例,详细阐述了大模型的训练原理、优化方法及实际应用场景。文
- java责任链模式
3213213333332132
java责任链模式村民告县长
责任链模式,通常就是一个请求从最低级开始往上层层的请求,当在某一层满足条件时,请求将被处理,当请求到最高层仍未满足时,则请求不会被处理。
就是一个请求在这个链条的责任范围内,会被相应的处理,如果超出链条的责任范围外,请求不会被相应的处理。
下面代码模拟这样的效果:
创建一个政府抽象类,方便所有的具体政府部门继承它。
package 责任链模式;
/**
*
- linux、mysql、nginx、tomcat 性能参数优化
ronin47
一、linux 系统内核参数
/etc/sysctl.conf文件常用参数 net.core.netdev_max_backlog = 32768 #允许送到队列的数据包的最大数目
net.core.rmem_max = 8388608 #SOCKET读缓存区大小
net.core.wmem_max = 8388608 #SOCKET写缓存区大
- php命令行界面
dcj3sjt126com
PHPcli
常用选项
php -v
php -i PHP安装的有关信息
php -h 访问帮助文件
php -m 列出编译到当前PHP安装的所有模块
执行一段代码
php -r 'echo "hello, world!";'
php -r 'echo "Hello, World!\n";'
php -r '$ts = filemtime("
- Filter&Session
171815164
session
Filter
HttpServletRequest requ = (HttpServletRequest) req;
HttpSession session = requ.getSession();
if (session.getAttribute("admin") == null) {
PrintWriter out = res.ge
- 连接池与Spring,Hibernate结合
g21121
Hibernate
前几篇关于Java连接池的介绍都是基于Java应用的,而我们常用的场景是与Spring和ORM框架结合,下面就利用实例学习一下这方面的配置。
1.下载相关内容: &nb
- [简单]mybatis判断数字类型
53873039oycg
mybatis
昨天同事反馈mybatis保存不了int类型的属性,一直报错,错误信息如下:
Caused by: java.lang.NumberFormatException: For input string: "null"
at sun.mis
- 项目启动时或者启动后ava.lang.OutOfMemoryError: PermGen space
程序员是怎么炼成的
eclipsejvmtomcatcatalina.sheclipse.ini
在启动比较大的项目时,因为存在大量的jsp页面,所以在编译的时候会生成很多的.class文件,.class文件是都会被加载到jvm的方法区中,如果要加载的class文件很多,就会出现方法区溢出异常 java.lang.OutOfMemoryError: PermGen space.
解决办法是点击eclipse里的tomcat,在
- 我的crm小结
aijuans
crm
各种原因吧,crm今天才完了。主要是接触了几个新技术:
Struts2、poi、ibatis这几个都是以前的项目中用过的。
Jsf、tapestry是这次新接触的,都是界面层的框架,用起来也不难。思路和struts不太一样,传说比较简单方便。不过个人感觉还是struts用着顺手啊,当然springmvc也很顺手,不知道是因为习惯还是什么。jsf和tapestry应用的时候需要知道他们的标签、主
- spring里配置使用hibernate的二级缓存几步
antonyup_2006
javaspringHibernatexmlcache
.在spring的配置文件中 applicationContent.xml,hibernate部分加入
xml 代码
<prop key="hibernate.cache.provider_class">org.hibernate.cache.EhCacheProvider</prop>
<prop key="hi
- JAVA基础面试题
百合不是茶
抽象实现接口String类接口继承抽象类继承实体类自定义异常
/* * 栈(stack):主要保存基本类型(或者叫内置类型)(char、byte、short、 *int、long、 float、double、boolean)和对象的引用,数据可以共享,速度仅次于 * 寄存器(register),快于堆。堆(heap):用于存储对象。 */ &
- 让sqlmap文件 "继承" 起来
bijian1013
javaibatissqlmap
多个项目中使用ibatis , 和数据库表对应的 sqlmap文件(增删改查等基本语句),dao, pojo 都是由工具自动生成的, 现在将这些自动生成的文件放在一个单独的工程中,其它项目工程中通过jar包来引用 ,并通过"继承"为基础的sqlmap文件,dao,pojo 添加新的方法来满足项
- 精通Oracle10编程SQL(13)开发触发器
bijian1013
oracle数据库plsql
/*
*开发触发器
*/
--得到日期是周几
select to_char(sysdate+4,'DY','nls_date_language=AMERICAN') from dual;
select to_char(sysdate,'DY','nls_date_language=AMERICAN') from dual;
--建立BEFORE语句触发器
CREATE O
- 【EhCache三】EhCache查询
bit1129
ehcache
本文介绍EhCache查询缓存中数据,EhCache提供了类似Hibernate的查询API,可以按照给定的条件进行查询。
要对EhCache进行查询,需要在ehcache.xml中设定要查询的属性
数据准备
@Before
public void setUp() {
//加载EhCache配置文件
Inpu
- CXF框架入门实例
白糖_
springWeb框架webserviceservlet
CXF是apache旗下的开源框架,由Celtix + XFire这两门经典的框架合成,是一套非常流行的web service框架。
它提供了JAX-WS的全面支持,并且可以根据实际项目的需要,采用代码优先(Code First)或者 WSDL 优先(WSDL First)来轻松地实现 Web Services 的发布和使用,同时它能与spring进行完美结合。
在apache cxf官网提供
- angular.equals
boyitech
AngularJSAngularJS APIAnguarJS 中文APIangular.equals
angular.equals
描述:
比较两个值或者两个对象是不是 相等。还支持值的类型,正则表达式和数组的比较。 两个值或对象被认为是 相等的前提条件是以下的情况至少能满足一项:
两个值或者对象能通过=== (恒等) 的比较
两个值或者对象是同样类型,并且他们的属性都能通过angular
- java-腾讯暑期实习生-输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A[0]*A[1]*...*A[i-1]*A[i+1]
bylijinnan
java
这道题的具体思路请参看 何海涛的微博:http://weibo.com/zhedahht
import java.math.BigInteger;
import java.util.Arrays;
public class CreateBFromATencent {
/**
* 题目:输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A
- FastDFS 的安装和配置 修订版
Chen.H
linuxfastDFS分布式文件系统
FastDFS Home:http://code.google.com/p/fastdfs/
1. 安装
http://code.google.com/p/fastdfs/wiki/Setup http://hi.baidu.com/leolance/blog/item/3c273327978ae55f93580703.html
安装libevent (对libevent的版本要求为1.4.
- [强人工智能]拓扑扫描与自适应构造器
comsci
人工智能
当我们面对一个有限拓扑网络的时候,在对已知的拓扑结构进行分析之后,发现在连通点之后,还存在若干个子网络,且这些网络的结构是未知的,数据库中并未存在这些网络的拓扑结构数据....这个时候,我们该怎么办呢?
那么,现在我们必须设计新的模块和代码包来处理上面的问题
- oracle merge into的用法
daizj
oraclesqlmerget into
Oracle中merge into的使用
http://blog.csdn.net/yuzhic/article/details/1896878
http://blog.csdn.net/macle2010/article/details/5980965
该命令使用一条语句从一个或者多个数据源中完成对表的更新和插入数据. ORACLE 9i 中,使用此命令必须同时指定UPDATE 和INSE
- 不适合使用Hadoop的场景
datamachine
hadoop
转自:http://dev.yesky.com/296/35381296.shtml。
Hadoop通常被认定是能够帮助你解决所有问题的唯一方案。 当人们提到“大数据”或是“数据分析”等相关问题的时候,会听到脱口而出的回答:Hadoop! 实际上Hadoop被设计和建造出来,是用来解决一系列特定问题的。对某些问题来说,Hadoop至多算是一个不好的选择,对另一些问题来说,选择Ha
- YII findAll的用法
dcj3sjt126com
yii
看文档比较糊涂,其实挺简单的:
$predictions=Prediction::model()->findAll("uid=:uid",array(":uid"=>10));
第一个参数是选择条件:”uid=10″。其中:uid是一个占位符,在后面的array(“:uid”=>10)对齐进行了赋值;
更完善的查询需要
- vim 常用 NERDTree 快捷键
dcj3sjt126com
vim
下面给大家整理了一些vim NERDTree的常用快捷键了,这里几乎包括了所有的快捷键了,希望文章对各位会带来帮助。
切换工作台和目录
ctrl + w + h 光标 focus 左侧树形目录ctrl + w + l 光标 focus 右侧文件显示窗口ctrl + w + w 光标自动在左右侧窗口切换ctrl + w + r 移动当前窗口的布局位置
o 在已有窗口中打开文件、目录或书签,并跳
- Java把目录下的文件打印出来
蕃薯耀
列出目录下的文件文件夹下面的文件目录下的文件
Java把目录下的文件打印出来
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月11日 11:02:
- linux远程桌面----VNCServer与rdesktop
hanqunfeng
Desktop
windows远程桌面到linux,需要在linux上安装vncserver,并开启vnc服务,同时需要在windows下使用vnc-viewer访问Linux。vncserver同时支持linux远程桌面到linux。
linux远程桌面到windows,需要在linux上安装rdesktop,同时开启windows的远程桌面访问。
下面分别介绍,以windo
- guava中的join和split功能
jackyrong
java
guava库中,包含了很好的join和split的功能,例子如下:
1) 将LIST转换为使用字符串连接的字符串
List<String> names = Lists.newArrayList("John", "Jane", "Adam", "Tom");
- Web开发技术十年发展历程
lampcy
androidWeb浏览器html5
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- 架构师之mima-----------------mina的非NIO控制IOBuffer(说得比较好)
nannan408
buffer
1.前言。
如题。
2.代码。
IoService
IoService是一个接口,有两种实现:IoAcceptor和IoConnector;其中IoAcceptor是针对Server端的实现,IoConnector是针对Client端的实现;IoService的职责包括:
1、监听器管理
2、IoHandler
3、IoSession
- ORA-00054:resource busy and acquire with NOWAIT specified
Everyday都不同
oraclesessionLock
[Oracle]
今天对一个数据量很大的表进行操作时,出现如题所示的异常。此时表明数据库的事务处于“忙”的状态,而且被lock了,所以必须先关闭占用的session。
step1,查看被lock的session:
select t2.username, t2.sid, t2.serial#, t2.logon_time
from v$locked_obj
- javascript学习笔记
tntxia
JavaScript
javascript里面有6种基本类型的值:number、string、boolean、object、function和undefined。number:就是数字值,包括整数、小数、NaN、正负无穷。string:字符串类型、单双引号引起来的内容。boolean:true、false object:表示所有的javascript对象,不用多说function:我们熟悉的方法,也就是
- Java enum的用法详解
xieke90
enum枚举
Java中枚举实现的分析:
示例:
public static enum SEVERITY{
INFO,WARN,ERROR
}
enum很像特殊的class,实际上enum声明定义的类型就是一个类。 而这些类都是类库中Enum类的子类 (java.l