初始化概览
AudioFlinger和AudioPolicy两者是Android Audio框架层最主要的两个服务,他们两个是Android框架层的本地服务,在init.rc中启动;
AudioPolicyManager负责音频策略定制者,说白了就相当于Audio系统的司令。
AudioFlinger负责与底层audio alsa进行交互的实现者,那么它就是Audio系统的军官,干苦力的;
总体框架:
两个服务都属于audioserver进程,严格意义上来说audioserver通过init进程fork出来的,所以它是Linux系统中的一个进程。
AudioFlinger:media.audio_flinger
AudioPolicyService:media.audio_policy
1、通过init进程fork出来,从而开始各自服务的初始化
2、首先初始化audioflinger服务
3、其次初始化audiopolicyservice服务
4、进一步通过audiopolicyservice和audioflinger完成音频hal层的初始化,这部分将是本文的重点难点分析。
1、通过init进程fork出来,从而开始各自服务的初始化
来,看下它是怎么定义:
//frameworks/av/media/audioserver/audioserver.rc
service audioserver /system/bin/audioserver
class core
user audioserver
onrestart restart audio-hal-2-0
ioprio rt 4 //设置io优先级
disabled
可以看到audioserver属于core类型,优于一般的main类型,也就是说它的启动是更早的。
audioflinger&audiopolicyserver启动:
frameworks/av/media/audioserver/main_audioserver.cpp
int main(int argc __unused, char **argv)
{
---
android::hardware::configureRpcThreadpool(4, false /*callerWillJoin*/);
sp proc(ProcessState::self());
sp sm = defaultServiceManager();
ALOGI("ServiceManager: %p", sm.get());
AudioFlinger::instantiate();
AudioPolicyService::instantiate();
---
}
2、首先初始化audioflinger服务
AudioFlinger初始化比较简洁,就是创建服务并将自身注册到systemserver中去,其次就是初始化部分通信组件以便后续与audio hal层进行通讯。如下图所示:
3、其次初始化audiopolicyservice服务
AudioPolicyService的初始化就比audioflinger服务初始化复杂了,下图仅仅是audiopolicyservice与audiopolicymanager的初始化。主要就是创建出几个线程(AudioCommandThread类型的线程),以便后续与上层进行交互使用,上层调用的比如播放暂停的操作指令会进入这个线程队列,实现上层异步调用也可以防止底层耗时操作导致阻塞上层应用。接着便是创建AudioPolicyManager实例以及客户端等。大概流程如下图所示:
4、进一步通过audiopolicyservice和audioflinger完成音频hal层的初始化,这部分将是本文的重点难点分析。
audiopolicyservice启动后,开始创建audiopolicymanager,并通过audiopolicymanager初始化audiopolicy策略,然后再进行对audio路由引擎(EngineInstance)进行初始化,初始化完路由引擎后便对audio hal 的so进行加载初始化,进一步通过加载后的so针对音频设备进行open操作,并默认打开主通道的输出音频流,最后将成功初始化的音频设备进行保存到audiopolicymanager以及audioflinger中,最后完成初始化。
详细的初始化流程如下图所示:
从上面的初始大概流程可以知道,audio框架的初始化重点在audiopolicy部分的初始化,它不仅需要初始音频策略,还需针对加载的音频策略针对hal层的音频设备进行初始化,这部分还涉及到audioflinger部分,但以audiopolicy作为主线进行分析,下面将一步步对其进行分析。
//frameworks/av/services/audiopolicy/managerdefault/AudioPolicyManager.cpp
AudioPolicyManager::AudioPolicyManager(AudioPolicyClientInterface *clientInterface)
: AudioPolicyManager(clientInterface, false /*forTesting*/)
{
//1、加载audiopolicy的策略文件
loadConfig();
//2、针对加载的策略进行真正的初始化
initialize();
}
可以看到AudioPolicyManager构造函数很简单,就两个调用:loadConfig(),initialize();
很简单,就通过配置文件USE_XML_AUDIO_POLICY_CONF来控制是使用XML配置的策略文件还是使用传统旧config配置文件。这个变量的初始化可以通过配置文件进行选择。
//frameworks/av/services/audiopolicy/managerdefault/AudioPolicyManager.cpp
void AudioPolicyManager::loadConfig() {
#ifdef USE_XML_AUDIO_POLICY_CONF
if (deserializeAudioPolicyXmlConfig(getConfig()) != NO_ERROR) {
#else
if ((ConfigParsingUtils::loadConfig(AUDIO_POLICY_VENDOR_CONFIG_FILE, getConfig()) != NO_ERROR)
&& (ConfigParsingUtils::loadConfig(AUDIO_POLICY_CONFIG_FILE, getConfig()) != NO_ERROR)) {
#endif
ALOGE("could not load audio policy configuration file, setting defaults");
getConfig().setDefault();
}
}
其会通过Serializer.cpp进行XML文件的解析,这个是一个很繁重的任务,如需讲明其解析过程还需另起一个篇幅才能将其介绍,与初始化关系不大,一笔带过。
XML的配置文件格式如下(简化版配置):
//frameworks/av/services/audiopolicy/config/audio_policy_configuration.xml
- Speaker
Speaker
//输出混音线程
//输出设备节点
//音频路由
好了,上面的都是开胃菜,这个才是硬菜。
来,看下这个大概步骤,心中有谱,码海不慌。
主要是三个步骤:
2.1初始音频路由引擎
audio_policy::EngineInstance *engineInstance = audio_policy::EngineInstance::getInstance();
2.2、加载so 并且打开设备节点
mpClientInterface->loadHwModule(hwModule->getName())
2.3、打开输出流
status_t status = outputDesc->open(nullptr, profileType, address, AUDIO_STREAM_DEFAULT, AUDIO_OUTPUT_FLAG_NONE,&output);
怕你不信,所以贴了部分代码出来:
status_t AudioPolicyManager::initialize() {
//1、初始音频路由引擎
// Once policy config has been parsed, retrieve an instance of the engine and initialize it.
audio_policy::EngineInstance *engineInstance = audio_policy::EngineInstance::getInstance();
if (!engineInstance) {
ALOGE("%s: Could not get an instance of policy engine", __FUNCTION__);
return NO_INIT;
}
// Retrieve the Policy Manager Interface
mEngine = engineInstance->queryInterface();
if (mEngine == NULL) {
ALOGE("%s: Failed to get Policy Engine Interface", __FUNCTION__);
return NO_INIT;
}
mEngine->setObserver(this);
status_t status = mEngine->initCheck();
for (const auto& hwModule : mHwModulesAll) {
//2、加载so 并且打开设备节点
hwModule->setHandle(mpClientInterface->loadHwModule(hwModule->getName()));
mHwModules.push_back(hwModule);
// open all output streams needed to access attached devices
// except for direct output streams that are only opened when they are actually
// required by an app.
// This also validates mAvailableOutputDevices list
for (const auto& outProfile : hwModule->getOutputProfiles()) {
//经过一系列有效判断后 创建输出相关参数
sp outputDesc = new SwAudioOutputDescriptor(outProfile,
mpClientInterface);
const DeviceVector &supportedDevices = outProfile->getSupportedDevices();
const DeviceVector &devicesForType = supportedDevices.getDevicesFromType(profileType);
String8 address = devicesForType.size() > 0 ? devicesForType.itemAt(0)->mAddress
: String8("");
audio_io_handle_t output = AUDIO_IO_HANDLE_NONE;
//3、打开输出流
status_t status = outputDesc->open(nullptr, profileType, address,
AUDIO_STREAM_DEFAULT, AUDIO_OUTPUT_FLAG_NONE, &output);
if (status != NO_ERROR) {
ALOGW("Cannot open output stream for device %08x on hw module %s",
outputDesc->mDevice,
hwModule->getName());
} else {
for (const auto& dev : supportedDevices) {
ssize_t index = mAvailableOutputDevices.indexOf(dev);
// give a valid ID to an attached device once confirmed it is reachable
if (index >= 0 && !mAvailableOutputDevices[index]->isAttached()) {
//这个很重要的变量,保存了可用的输出设备,后续会进一步说明
mAvailableOutputDevices[index]->attach(hwModule);
}
}
if (mPrimaryOutput == 0 &&
outProfile->getFlags() & AUDIO_OUTPUT_FLAG_PRIMARY) {
mPrimaryOutput = outputDesc;
}
addOutput(output, outputDesc);
setOutputDevice(outputDesc, profileType, true, 0, NULL, address);
}
}//end inner for
}//end out for
}
// make sure all attached devices have been allocated a unique ID