Android P Audio系统笔记:AudioPolicy&AudioFlinger初始化

AudioPolicy&AudioFlinger初始化

  • 初始化概览
    • 总体框架
    • 启动步骤
    • AudioPolicy初始化分析
      • 1、loadConfig()
      • 2、initialize()

初始化概览

总体框架

AudioFlinger和AudioPolicy两者是Android Audio框架层最主要的两个服务,他们两个是Android框架层的本地服务,在init.rc中启动;
AudioPolicyManager负责音频策略定制者,说白了就相当于Audio系统的司令。
AudioFlinger负责与底层audio alsa进行交互的实现者,那么它就是Audio系统的军官,干苦力的;
总体框架:
两个服务都属于audioserver进程,严格意义上来说audioserver通过init进程fork出来的,所以它是Linux系统中的一个进程。
AudioFlinger:media.audio_flinger
AudioPolicyService:media.audio_policy

Android P Audio系统笔记:AudioPolicy&AudioFlinger初始化_第1张图片

启动步骤

1、通过init进程fork出来,从而开始各自服务的初始化
2、首先初始化audioflinger服务
3、其次初始化audiopolicyservice服务
4、进一步通过audiopolicyservice和audioflinger完成音频hal层的初始化,这部分将是本文的重点难点分析。
1、通过init进程fork出来,从而开始各自服务的初始化
来,看下它是怎么定义:

//frameworks/av/media/audioserver/audioserver.rc
service audioserver /system/bin/audioserver
    class core
    user audioserver
    onrestart restart audio-hal-2-0
    ioprio rt 4 //设置io优先级
    disabled

可以看到audioserver属于core类型,优于一般的main类型,也就是说它的启动是更早的。
audioflinger&audiopolicyserver启动:

frameworks/av/media/audioserver/main_audioserver.cpp
int main(int argc __unused, char **argv)
{
    ---
     android::hardware::configureRpcThreadpool(4, false /*callerWillJoin*/);
     sp proc(ProcessState::self());
     sp sm = defaultServiceManager();
     ALOGI("ServiceManager: %p", sm.get());
     AudioFlinger::instantiate();
     AudioPolicyService::instantiate();
    ---
}

2、首先初始化audioflinger服务
AudioFlinger初始化比较简洁,就是创建服务并将自身注册到systemserver中去,其次就是初始化部分通信组件以便后续与audio hal层进行通讯。如下图所示:

Android P Audio系统笔记:AudioPolicy&AudioFlinger初始化_第2张图片

3、其次初始化audiopolicyservice服务
AudioPolicyService的初始化就比audioflinger服务初始化复杂了,下图仅仅是audiopolicyservice与audiopolicymanager的初始化。主要就是创建出几个线程(AudioCommandThread类型的线程),以便后续与上层进行交互使用,上层调用的比如播放暂停的操作指令会进入这个线程队列,实现上层异步调用也可以防止底层耗时操作导致阻塞上层应用。接着便是创建AudioPolicyManager实例以及客户端等。大概流程如下图所示:

Android P Audio系统笔记:AudioPolicy&AudioFlinger初始化_第3张图片

4、进一步通过audiopolicyservice和audioflinger完成音频hal层的初始化,这部分将是本文的重点难点分析。

audiopolicyservice启动后,开始创建audiopolicymanager,并通过audiopolicymanager初始化audiopolicy策略,然后再进行对audio路由引擎(EngineInstance)进行初始化,初始化完路由引擎后便对audio hal 的so进行加载初始化,进一步通过加载后的so针对音频设备进行open操作,并默认打开主通道的输出音频流,最后将成功初始化的音频设备进行保存到audiopolicymanager以及audioflinger中,最后完成初始化。
详细的初始化流程如下图所示:

Android P Audio系统笔记:AudioPolicy&AudioFlinger初始化_第4张图片

AudioPolicy初始化分析

从上面的初始大概流程可以知道,audio框架的初始化重点在audiopolicy部分的初始化,它不仅需要初始音频策略,还需针对加载的音频策略针对hal层的音频设备进行初始化,这部分还涉及到audioflinger部分,但以audiopolicy作为主线进行分析,下面将一步步对其进行分析。

//frameworks/av/services/audiopolicy/managerdefault/AudioPolicyManager.cpp
AudioPolicyManager::AudioPolicyManager(AudioPolicyClientInterface *clientInterface)
        : AudioPolicyManager(clientInterface, false /*forTesting*/)
{
    //1、加载audiopolicy的策略文件
    loadConfig();
    //2、针对加载的策略进行真正的初始化
    initialize();
}

可以看到AudioPolicyManager构造函数很简单,就两个调用:loadConfig(),initialize();

1、loadConfig()

很简单,就通过配置文件USE_XML_AUDIO_POLICY_CONF来控制是使用XML配置的策略文件还是使用传统旧config配置文件。这个变量的初始化可以通过配置文件进行选择。

//frameworks/av/services/audiopolicy/managerdefault/AudioPolicyManager.cpp
void AudioPolicyManager::loadConfig() {
#ifdef USE_XML_AUDIO_POLICY_CONF
    if (deserializeAudioPolicyXmlConfig(getConfig()) != NO_ERROR) {
#else
    if ((ConfigParsingUtils::loadConfig(AUDIO_POLICY_VENDOR_CONFIG_FILE, getConfig()) != NO_ERROR)
           && (ConfigParsingUtils::loadConfig(AUDIO_POLICY_CONFIG_FILE, getConfig()) != NO_ERROR)) {
#endif
        ALOGE("could not load audio policy configuration file, setting defaults");
        getConfig().setDefault();
    }
}

其会通过Serializer.cpp进行XML文件的解析,这个是一个很繁重的任务,如需讲明其解析过程还需另起一个篇幅才能将其介绍,与初始化关系不大,一笔带过。
XML的配置文件格式如下(简化版配置):

//frameworks/av/services/audiopolicy/config/audio_policy_configuration.xml

    
    
        
            
                Speaker
            
            Speaker
            //输出混音线程
                
                    
                
            
            //输出设备节点
                
                
            
            
                //音频路由
                
            
        
    

2、initialize()

好了,上面的都是开胃菜,这个才是硬菜。
来,看下这个大概步骤,心中有谱,码海不慌。
主要是三个步骤:
2.1初始音频路由引擎
audio_policy::EngineInstance *engineInstance = audio_policy::EngineInstance::getInstance();
2.2、加载so 并且打开设备节点
mpClientInterface->loadHwModule(hwModule->getName())
2.3、打开输出流
status_t status = outputDesc->open(nullptr, profileType, address, AUDIO_STREAM_DEFAULT, AUDIO_OUTPUT_FLAG_NONE,&output);
怕你不信,所以贴了部分代码出来:

status_t AudioPolicyManager::initialize() {
    //1、初始音频路由引擎
    // Once policy config has been parsed, retrieve an instance of the engine and initialize it.
    audio_policy::EngineInstance *engineInstance = audio_policy::EngineInstance::getInstance();
    if (!engineInstance) {
        ALOGE("%s:  Could not get an instance of policy engine", __FUNCTION__);
        return NO_INIT;
    }
    // Retrieve the Policy Manager Interface
    mEngine = engineInstance->queryInterface();
    if (mEngine == NULL) {
        ALOGE("%s: Failed to get Policy Engine Interface", __FUNCTION__);
        return NO_INIT;
    }
    mEngine->setObserver(this);
    status_t status = mEngine->initCheck();

      for (const auto& hwModule : mHwModulesAll) {
        //2、加载so 并且打开设备节点
        hwModule->setHandle(mpClientInterface->loadHwModule(hwModule->getName()));
        mHwModules.push_back(hwModule);
        // open all output streams needed to access attached devices
        // except for direct output streams that are only opened when they are actually
        // required by an app.
        // This also validates mAvailableOutputDevices list
        for (const auto& outProfile : hwModule->getOutputProfiles()) {
            //经过一系列有效判断后 创建输出相关参数
            sp outputDesc = new SwAudioOutputDescriptor(outProfile,
                                                                                 mpClientInterface);
            const DeviceVector &supportedDevices = outProfile->getSupportedDevices();
            const DeviceVector &devicesForType = supportedDevices.getDevicesFromType(profileType);


            String8 address = devicesForType.size() > 0 ? devicesForType.itemAt(0)->mAddress
                    : String8("");
            audio_io_handle_t output = AUDIO_IO_HANDLE_NONE;
            //3、打开输出流
            status_t status = outputDesc->open(nullptr, profileType, address,
                                           AUDIO_STREAM_DEFAULT, AUDIO_OUTPUT_FLAG_NONE, &output);

            if (status != NO_ERROR) {
                ALOGW("Cannot open output stream for device %08x on hw module %s",
                      outputDesc->mDevice,
                      hwModule->getName());
            } else {
                for (const auto& dev : supportedDevices) {
                    ssize_t index = mAvailableOutputDevices.indexOf(dev);
                    // give a valid ID to an attached device once confirmed it is reachable
                    if (index >= 0 && !mAvailableOutputDevices[index]->isAttached()) {
                        //这个很重要的变量,保存了可用的输出设备,后续会进一步说明
                        mAvailableOutputDevices[index]->attach(hwModule);
                    }
                }
                if (mPrimaryOutput == 0 &&
                        outProfile->getFlags() & AUDIO_OUTPUT_FLAG_PRIMARY) {
                    mPrimaryOutput = outputDesc;
                }
                addOutput(output, outputDesc);
                setOutputDevice(outputDesc, profileType, true, 0,  NULL, address);
            }
         }//end inner for
        }//end out for
    }
    // make sure all attached devices have been allocated a unique ID

 

 

 

 

 

 

 

 

 

你可能感兴趣的:(音频,audio分析,audio流程分析,音频)