人工智能之进化计算:基于遗传算法求解TSP问题,C/C++实现

和生物界中生物的繁殖进化一样,遗传算法的过程主要包括:选择,交叉,变异,每次迭代都能生成比上一代更好的种群。并且,交叉应该是高概率,变异应该是低概率(维持物种稳定,并且能够进化)。

算法主要思想(无性繁殖,纯属个人见解):根据当前种群生成两份样本,第一份:用当代最好的一半样本直接变异,生成一份新的样本;第二份:从当代最好的一半样本中随机选择,构成新的另一半样本,不变异。(自然界中有无性繁殖,所以交叉这一步似乎可以省略,以下程序直接忽略交叉这一步)。注明:高概率交叉也是可行的(传统算法都是高概率交叉)。

第一代种群的个体可以随机生成,也可以先利用贪心算法,生成一个较优的路径(在初始种群中有一个优秀的个体),迭代循环刚开始时,就可以得到一个较优的路径,减少循环迭代的次数。若不使用贪心算法,迭代循环刚开始时,得到的路径较长。这一步有无对最后结果没有影响。

使用多线程,每个线程单独求解,最后汇总所有线程的结果,取最优的。计算密集型的程序,多核CPU不能让它闲着。

使用att48数据集作为测试,该数据集中包含了48座城市的坐标。

人工智能之进化计算:基于遗传算法求解TSP问题,C/C++实现_第1张图片

 部分代码如下:

#include 		
#include 
#include 
#include 
#include 
#include 
using namespace std;

const int city_num = 48;
const int population_size = 1000;
const int iteration_times = 2000;
const float crossover_chance = 0.5;
//const float mutation_chance = 0.02;
const int thread_num = 16;
const int best_solution = 10628;

class Point
{
public:
	short int id;
	short int x;
	short int y;
public:
	Point(short int _id = 0, short int _x = 0, short int _y = 0) :id(_id), x(_x), y(_y)
	{
	}
};

typedef vector Points;
typedef vector Individual;
typedef vector Population;

int GetPointsFromFile(const char filename[], Points& points);
void GetDistanceMatrix(const Points& points);
int GetDistance(const Point& p1, const Point& p2);
int GetPathLength(int index[]);
void InitPopulation(Population& population, const Points& points);
void GreedyInitPath(const Points& points, Individual& indiv);//可有可无,差别不大
void Selection(const Population& population, Population& parents);
void CPX(const Individual& p1, const Individual& p2, Individual& children);//我是摆设
void Mutation(Individual& indiv);
bool Cmp(const Individual& indiv1, const Individual& indiv2);
int Tsp(const Points& points, int shorest_path_length_of_thread[], int tid);

int dis[city_num][city_num];

//略

int main()
{
	clock_t t = clock();

	const char filename[100] = "E:\\att48.txt";
	Points points;

	GetPointsFromFile(filename, points);
	GetDistanceMatrix(points);

	int shorest_path_length = INT_MAX;
	int shorest_path_length_sum = 0;
	int shorest_path_length_of_thread[thread_num];
	int shortest_path_thread_id;

	thread td[thread_num];
	for (int i = 0; i < thread_num; i++)
	{
		td[i] = thread(&Tsp, points, shorest_path_length_of_thread, i);
	}

	for (int i = 0; i < thread_num; i++)
	{
		td[i].join();
	}

	for (int i = 0; i < thread_num; i++)
	{
		shorest_path_length_sum += shorest_path_length_of_thread[i];
		if (shorest_path_length_of_thread[i] < shorest_path_length)
		{
			shorest_path_length = shorest_path_length_of_thread[i];
			shortest_path_thread_id = i;
		}
	}

	cout << "最短路径平均值: " << shorest_path_length_sum / thread_num;
	cout << ", 和最优解之间的误差: " << fabs((float)(best_solution - shorest_path_length_sum / thread_num)) / (float)best_solution * 100.0 << "%" << endl;
	cout << "第" << shortest_path_thread_id << "个线程得到最短路径的解最优, ";
	cout << "路径长度: " << shorest_path_length;
	cout << ", 和最优解之间的误差: " << fabs((float)(best_solution - shorest_path_length)) / (float)best_solution * 100.0 << "%" << endl;
	cout << "用时" << ((double)clock() - (double)t) / CLOCKS_PER_SEC << "秒";

	return 0;
}

部分运行结果如下:

人工智能之进化计算:基于遗传算法求解TSP问题,C/C++实现_第2张图片

第3个线程迭代764次时,得到了最优解10628,用时不到1秒,速度还行,但还是有点慢,常见TSP数据集的最优解如下:

人工智能之进化计算:基于遗传算法求解TSP问题,C/C++实现_第3张图片

每个数据集的距离计算公式不一样,参见http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp95.pdf 

得到的最优路径用python绘制如下:

人工智能之进化计算:基于遗传算法求解TSP问题,C/C++实现_第4张图片

你可能感兴趣的:(人工智能,c语言,c++)