- 使用AINetwork进行AI模型管理
qahaj
人工智能python
技术背景介绍AINetwork是一个Layer1区块链,专为管理大规模AI模型而设计。它利用去中心化的GPU网络,由$AIN代币驱动,并助力AI驱动的NFTs(AINFTs)。其目标是为开发者提供一个安全且高效的平台,来部署和管理AI模型。核心原理解析AINetwork通过结合区块链技术和去中心化的计算资源,分布式管理和执行大规模的AI模型运算任务。这意味着开发者能够在网络中高效利用共享的GPU资
- k8s集群中部署dcgm-exporter收集GPU指标
thinkerCoder
kubernetes容器运维GPU
总体步骤:部署dcgm-exporter的DaemonSet和Service,确保Service有正确的标签和端口。创建ServiceMonitor,选择dcgm-exporter的Service,并指定端口。检查Prometheus的targets页面,确认dcgm-exporter是否被正确发现和抓取。可能需要调整Prometheus的RBAC或网络策略,确保访问权限。1,部署dcgm-exp
- N卡 英伟达Nvidia 显卡及其计算能力(Compute Capability)表
Panesle
显卡Nvidiagpu算力英伟达
N卡英伟达Nvidia显卡及其计算能力(ComputeCapability)表某些库或软件对显卡算力有要求,可参考下表核对。比如:AWQ量化模型不支持算力小于7.5的显卡V100:ValueError:ThequantizationmethodawqisnotsupportedforthecurrentGPU.Minimumcapability:75.Currentcapability:70.
- 第N2周:构建词典
OreoCC
NLP
本人往期文章可查阅:深度学习总结我的环境:语言环境:Python3.11编译器:PyCharm深度学习环境:Pytorchtorch==2.0.0+cu118torchvision==0.18.1+cu118显卡:NVIDIAGeForceGTX1660本周任务:使用N1周的.txt文件构建词典,停用词请自定义1.导入数据fromtorchtext.vocabimportbuild_vocab_f
- 基于PyTorch的深度学习5—神经网络工具箱
Wis4e
深度学习pytorch神经网络
nn.Module是nn的一个核心数据结构,它可以是神经网络的某个层(Layer),也可以是包含多层的神经网络。在实际使用中,最常见的做法是继承nn.Module,生成自己的网络/层。nn中已实现了绝大多数层,包括全连接层、损失层、激活层、卷积层、循环层等,这些层都是nn.Module的子类,能够自动检测到自己的Parameter,并将其作为学习参数,且针对GPU运行进行了cuDNN优化。nn中的
- 绿色算力网络构建与智能调度实践
智能计算研究中心
其他
内容概要绿色算力网络的构建需以能效优化为核心,通过智能调度系统实现算力资源的高效整合与动态分配。当前架构设计包含三大核心模块:异构计算集群(涵盖GPU、FPGA及量子计算单元)、跨区域网络互联协议(适配东数西算的传输需求)以及能耗监测平台(基于实时数据建模的碳足迹追踪)。下表示例展示了典型算力节点的关键参数对比:节点类型计算密度(TFLOPS/m²)功耗比(TOPS/W)延迟控制(ms)量子计算集
- 算力安全创新驱动未来趋势endofsentence
智能计算研究中心
其他
内容概要算力安全与技术创新正在重塑全球算力生态,其核心驱动力来自异构计算、边缘计算及量子计算等前沿技术的深度融合。当前算力架构正经历从集中式向分布式演进,通过异构加速芯片、动态资源调度算法及绿色能效优化,显著提升算力基础设施的可扩展性与可靠性。例如,异构计算通过CPU、GPU、FPGA的协同加速,使复杂模型训练效率提升40%以上。关键数据:根据IDC预测,到2025年全球智能算力需求将增长30倍,
- H100架构解析与性能优化策略
智能计算研究中心
其他
内容概要NVIDIAH100GPU作为面向高性能计算与人工智能领域的旗舰级产品,其架构设计与优化策略在计算效率、显存带宽及并行任务处理等方面实现了显著突破。本文将从核心架构创新与典型场景调优两个维度展开:首先解析第三代TensorCore的稀疏计算加速机制、FP8混合精度支持特性及其对矩阵运算的优化效果;其次,针对显存子系统中HBM3堆栈布局、L2缓存分区策略以及数据预取算法的协同优化进行拆解;最
- 【TVM教程】为 Mobile GPU 自动调优卷积网络
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:LianminZheng,EddieYan针对特定设备的自动调优对于获得最佳性能至关重要。本文介绍如何调优整个卷积网络。TVM中MobileGPU的算子实现是以template形式编写的。该template有许多可调参数(tile因子
- 深度学习训练中GPU内存管理
@Mr_LiuYang
遇到过的问题内存管理内存溢出outofmemoryGPU内存
文章目录概述常见问题1、设备选择和数据迁移2、显存监控函数3、显存释放函数4、自适应batchsize调节5、梯度累积概述在深度学习模型训练中,主流GPU显存通常为8GB~80GB,内存不足会导致训练中断或BatchSize受限,GPU内存管理是优化性能和避免OutOfMemoryError的关键挑战。本博客简介PyTorch中GPU内存管理的核心函数、用法和实战技巧,帮助开发者高效利用显存资源。
- 深度学习:CPU和GPU算力
壹十壹
深度学习深度学习gpu算力人工智能
一、算力“算力”(ComputingPower)通常是指计算机或计算系统执行计算任务的能力。它是衡量系统处理数据、运行算法以及执行计算任务效率的重要指标。根据上下文,算力可以在以下几种场景中具体化:1.单机算力CPU算力:中央处理器的计算能力,通常用核心数量(cores)、时钟频率(GHz)、以及每秒浮点运算次数(FLOPS)等指标衡量。GPU算力:图形处理单元用于并行处理的能力,尤其是在深度学习
- 如何在DigitalOcean的H100 GPU服务器上运行DeepSeek R1 模型
DO_Community
教程DeepSeekGPUai大语言模型人工智能
在DigitalOcean,我们一直在关注开源大语言模型(LLMs)和商业封闭模型之间差距的不断缩小。其中一个最关键的能力就是“推理”,也就是用合乎逻辑、讲得通的方式思考问题。以前,大语言模型的表现比较单一。只要给它们一个提示,它们就会直接给出答案,根本没有什么“二次思考”的过程,也没有什么机制能让模型在出错时自己纠正。这就让它们在遇到那些指令本身就可能有问题的情况时,很难进行深入推理、提出疑问或
- 基于llama_cpp 调用本地模型(llama)实现基本推理
月光技术杂谈
大模型初探llamallama.cpppythonLLM集成显卡本地模型AI
零基础实践本地推理模型基本应用:基于llama_cpp的本地模型调用。本文先安装llama_cpppython库,再编写程序,利用其调用llama-2-7b-chat.Q4_K_M.ggu模型。背景llama_cpp是一个基于C++的高性能库(llama.cpp)的Python绑定,支持在CPU或GPU上高效运行LLaMA及其衍生模型(如LLaMA2),并通过量化技术(如GGUF格式)优化内存使用
- OpenBayes 教程上新 | 性能比肩满血版 DeepSeek-R1,QwQ-32B 一键部署教程上线
上周,阿里云突发大招,强势开源了全新推理模型通义千问QwQ-32B。在多个关键基准测试上,其以32B的参数量,超越了OpenAI-o1-mini,比肩671B参数的满血版DeepSeek-R1。QwQ-32B不仅性能哇塞,在保持强劲性能的同时,它还大幅降低了部署使用成本,在消费级显卡上也能实现本地部署,堪称实力与性价比的典范。QwQ-32B在多项基准测试中与DeepSeek-R1-671B等推理模
- C# Winform做动画卡顿怎么办?
肖无疾
游戏gdi/gdi+opengldirectxc#
Winform用的GDI+,像全屏动画这种卡的稀巴烂,任务管理器看进程如果GPU没动静那就是渣,没加速。可以使用OpenGL或者DirectX这样有GPU加速就不卡了。OpenGL用下面这个,控件里会多出一个glControl,拖到form上CreateaWindowsApplication(.NETFramework4.6)NuGettoinstallOpenTK.GLControlNuGett
- Hyper-v 虚拟机Win11直通显卡
liwension
虚拟机应用技巧windows服务器virtualenv
Hyper-v虚拟机Win11直通显卡的操作步骤:1.确保你的物理机硬件支持IOMMU技术,并且显卡驱动支持WDDM2.4以上版本,可通过dxdiag查看驱动支持的WDDM版本2.在Win11系统中,点击Windows键,然后输入“控制面板”并打开,点击“程序”,选择“打开或关闭Windows功能”,勾选“Hyper-V”的选项,展开并确保选中所有子项,单击“确定”,然后重新启动电脑3.打开Hyp
- Windows 图形显示驱动开发-WDDM 3.2-用户模式工作提交(一)
程序员王马
windows图形显示驱动开发驱动开发
本文介绍在Windows11版本24H2(WDDM3.2)中仍在开发的用户模式(UM)工作提交功能。UM工作提交使应用程序能够直接从用户模式将工作提交到GPU,且延迟非常低。目标是提高经常向GPU提交小工作负载的应用程序的性能。此外,如果这些应用程序在容器或虚拟机(VM)中运行,则用户模式提交有望使它们受益匪浅。这一好处是因为在VM中运行的用户模式驱动程序(UMD)可以直接向GPU提交工作,而不必
- Windows 图形显示驱动开发-WDDM 3.2-自动显示切换(九)
程序员王马
windows驱动开发
面板驱动程序显示器驱动程序是根据从EDID生成的即插即用(PnP)硬件ID加载的。由于EDID保持不变,当任何一个GPU控制内部面板时,都会加载面板驱动程序。这两个驱动程序将显示相同的亮度功能。因此,加载应该不会造成任何问题,面板驱动程序也不需要知道哪个GPU在控制多路复用器。识别多路复用器控制的目标当OS启动驱动程序时,它会调用驱动程序的DxgkDdiQueryChildRelations来查询
- Windows 图形显示驱动开发-WDDM 3.2-自动显示切换(十)
程序员王马
驱动开发windows
电源转换序列以下示例描述了ADS系统的休眠电源转换。系统配置为连接dGPU的多路复用器。系统进入休眠状态。iGPU和dGPU都切换到了D3电源状态。系统关闭电源。用户开启系统电源。固件配置iGPU的多路复用器和iGPU在内部面板上的显示启动序列。Dxgkrnl读取最后的多路复用器配置(本例中为dGPU),并将其与使用ACPI的当前多路复用器位置(本例中为iGPU)进行比较。Dxgkrnl然后调用A
- 解密DeepSeek-R1模型微调实战:VIP专属技巧助你轻松掌握行业核心技术
竹木有心
人工智能
引言大模型微调已成为AI工程师的核心竞争力,但90%的学习者卡在以下痛点:❌开源数据集质量参差不齐❌实验环境搭建耗时易出错❌行业级调优方案闭源难获取CSDN大模型VIP专项计划针对上述问题,提供:✅金融/医疗/法律三大领域高质量微调数据集✅云端GPU实验环境即开即用✅行业头部企业实战案例库(附完整代码)一、基础篇:快速搭建微调环境(免费技巧)1.1使用HuggingFace标准流程fromtran
- 【大模型】DeepSeek-R1-Distill-Qwen部署及API调用
油泼辣子多加
大模型实战算法gptlangchain人工智能
DeepSeek-R1-Distill-Qwen是由中国人工智能公司深度求索(DeepSeek)开发的轻量化大语言模型,基于阿里巴巴的Qwen系列模型通过知识蒸馏技术优化而来。当前模型开源后,我们可以将其部署,使用API方式进行本地调用1.部署环境本文中的部署基础环境如下所示:PyTorch2.5.1Python3.12(ubuntu22.04)Cuda12.4GPURTX3090(24GB)*1
- opencv cuda例程 OpenCV和Cuda结合编程
weixin_44602056
opencvC++
本文转载自:https://www.fuwuqizhijia.com/linux/201704/70863.html此网页,仅保存下来供随时查看一、利用OpenCV中提供的GPU模块目前,OpenCV中已提供了许多GPU函数,直接使用OpenCV提供的GPU模块,可以完成大部分图像处理的加速操作。该方法的优点是使用简单,利用GpuMat管理CPU与GPU之间的数据传输,而且不需要关注内核函数调用参
- 利用CUDA与OpenCV实现高效图像处理:全面指南
快撑死的鱼
C++(C语言)算法大揭秘opencv图像处理人工智能
利用CUDA与OpenCV实现高效图像处理:全面指南前言在现代计算机视觉领域,图像处理的需求日益增加。无论是自动驾驶、安防监控,还是医疗影像分析,图像处理技术都扮演着至关重要的角色。然而,图像处理的计算量非常大,往往需要强大的计算能力来保证实时性和高效性。幸运的是,CUDA和OpenCV为我们提供了一种高效的图像处理解决方案。本篇文章将详细介绍如何结合CUDA与OpenCV,利用GPU的强大计算能
- linux 下 CUDA + Opencv 编程 之 CMakeLists.txt
maxruan
编程图像处理CUDAopencvlinuxc++cuda
CMAKE_MINIMUM_REQUIRED(VERSION2.8)PROJECT(medianFilterGPU)#CUDApackageFIND_PACKAGE(CUDAREQUIRED)INCLUDE(FindCUDA)#CUDAincludedirectoriesINCLUDE_DIRECTORIES(/usr/local/cuda/include)#OpenCVpackageFIND_P
- UE发生GPU崩溃D3D丢失,真的跟硬件有关系。
虚幻叫兽
UE虚幻引擎MetaHumanue5GPU崩溃
先说一下我的配置:2022年4月全新台式机。i912900kfDDR560003070ti8G读写7000m的M.2win11,最新显卡驱动,GameReady和Studio都试过。===但是BUT===UE5每天GPU崩溃几十次,UE4比较少见。按说我这配置还可以吧,鲁大师全国排名六百多(4月8日),二百三十多万分,也算够用。但我没说运行哪个UE程序导致的GPU崩溃。也许你看出来了,问题就出在8
- ue5.5崩溃报gpu错误快速修复注册表命令方法
Maya和blender动画技术
ue5ue5.5崩溃报gpu错误
网上已经有很多方法了,自己写了个regedit比处理dos批处理命令,启动时需要win管理员身份拷贝后,将以下代码,保存为run.bat格式批处理文件,右键鼠标,在弹出菜单中,选择用管理员身份运行。即可。南无阿弥陀佛。命令如下:::如果存在先删除原来变量,如下:regdeleteHKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Graphics
- AWS AppStream 2.0:开启云端应用交付新范式(实战解决方案剖析)
AWS官方合作商
aws云计算系统架构
导言:数字化转型中的"最后一公里"挑战当企业加速上云进程时,CAD设计软件、财务系统等专业工具受制于终端性能、数据安全与跨平台难题。AWSAppStream2.0作为全托管应用流服务,正为2000+企业破解这一困局——无需代码改造,将Windows应用转化为云服务。一、为什么AppStream2.0成为技术决策者新宠?1.1技术架构革命(对比传统VDI)去终端化部署:3D渲染/CAD等GPU应用在
- python 程序一次启动有两个进程的问题(flask)
小郎碎碎念
我恨BUGpythonflask开发语言
0.背景写了一个使用flask作为服务框架的程序,发现每次启动程序的时候,使用ps都能观察到两个python进程。此外,这个程序占用了GPU资源,我发现有两个python进程,分别占用了完全相同的GPU显存1.原因问题出在flask的启动方式上,我启动的时候,是这样启动的app.run(debug=True,host='0.0.0.0',port=5000)查到的资料如下,Flask中的debug
- 家庭组装台式电脑配置推荐(2024版)
encoding-console
配置组装台式机家用
家庭组装台式电脑配置推荐(2024版):1、处理器(CPU):可以选择英特尔(Intel)i5-10400F6核12线程盒装,或者13代i5-13400F。这些处理器能够满足大多数日常使用和游戏需求。2、显卡(GPU):RTX4060Ti是推荐的选择,其性能略高于RTX3070,但功耗更低,适合预算在6000元左右的配置。3、内存(RAM):16GB内存是推荐的配置,能够提供足够的多任务处理能力。
- Spring Event实例
五块钱三个
javajvm开发语言
1.定义事件类//设备故障事件(携带设备ID、故障描述、故障级别)publicclassEquipmentFailureEventextendsApplicationEvent{privateStringequipmentId;privateStringfailureDescription;privateFailureLevellevel;//枚举:CRITICAL,WARNINGpublicEq
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不