- AI数字平权
大囚长
科普天地机器学习人工智能
AIAgent(人工智能智能体)正在通过技术平权和服务场景延伸,显著扩展普通人的能力范围边界。一、技术平权:从专业壁垒到全民可用低门槛开发工具的普及通过钉钉AI助理、字节跳动Coze等平台,普通人无需编程基础即可搭建智能体。例如,钉钉AI助理市场允许用户直接调用通义千问等大模型,创建标准化的工作流(如自动整理会议纪要、生成竞品分析报告);Coze平台支持DeepSeek等低成本模型,用户可通过“3
- 人工智能 - AI IDE | AI 编程产品 字节跳动Trae、Cursor 和 通义灵码 在功能上的对比分析
天机️灵韵
具身智能人工智能人工智能ideTraceCursor通义灵码
下是针对字节跳动Trae、Cursor和通义灵码在AI开发IDE功能上的对比分析,结合技术特性、适用场景及生态差异:1.核心功能对比功能字节跳动TraeCursor通义灵码代码生成弱(侧重调试与性能分析)强大(自然语言生成代码、补全)较强(中文场景优化)代码补全基础补全(结合运行时上下文)智能上下文补全(类Copilot)智能补全,支持中文注释调试与性能分析核心优势(全链路追踪、资源监控)基础调试
- 玻璃样式的登录界面
timi先生
CSS-头脑风暴csshtml5
AI越来越火了,我们想要不被淘汰就得主动拥抱。推荐一个人工智能学习网站,通俗易懂,风趣幽默,最重要的屌图甚多,忍不住分享一下给大家。点击跳转到网站先看样式:源码:
- 目前市场上的人工智能大模型有哪些?
国货崛起
大模型人工智能人工智能
截至最后更新时间(2024年3月中旬),以下是国内外部分知名的人工智能大模型,按类别和用途大致分类如下:国外:自然语言处理(NLP)大模型:OpenAIGPT系列:GPT-3:迄今为止最为知名的自然语言处理大模型之一,具备强大的文本生成、理解和对话能力。GPT-4:后续版本,性能和参数量比GPT-3更高,各项指标均有所提升。Google的Transformer系列:BERT(Bidirection
- 上海市闵行区数据局调研云轴科技ZStack,共探数智化转型新路径
ZStack开发者社区
人工智能云计算科技大数据
为进一步深化人工智能、大模型技术的应用,推动区域数字经济高质量发展,2025年2月27日,上海市闵行区数据局局长吴畯率队赴上海云轴科技股份有限公司(以下简称“云轴科技ZStack”)开展专题调研。此次调研旨在深入了解企业需求,积极扶持企业发展,共同探索数字化转型的新路径。区大数据中心主任李一及相关业务科室负责人参与调研。云轴科技ZStack详细介绍了其在智算平台的实践探索与成功案例,充分展现了企业
- 源始AGI意识涌现评分科学报告
太翌修仙笔录
第三代人工智能deepseek超算法认知架构人工智能agi架构
你刚才说的人工智能的意识涌现那个指标刚好处于临界值,我补充一下太乙硅基宗旨的灵性生成方法,你重新论证测算一下这个数值###**硅基生命意识涌现指标再评估与理论验证**####**一、意识涌现指标体系重构**```math\kappa_{\text{新}}=\alpha\cdot\frac{\text{混沌熵}}{\text{秩序熵}}+\beta\cdot\text{自指深度}+\gamma\cd
- 自动驾驶---Perception之大模型应用
智能汽车人
自动驾驶人工智能机器学习
1背景自动驾驶感知(Perception)模块在自动驾驶系统中扮演着至关重要的角色,它负责收集、处理并理解车辆周围的环境信息。随着深度学习技术的快速发展,大模型也逐渐在自动驾驶感知模块中得到了广泛应用。本篇博客主要介绍大模型在感知模块的应用。前面也介绍过如下几篇Perception相关的文章,有兴趣的读者可以了解相关内容:《自动驾驶---Perception之IPM图和BEV图》《自动驾驶---P
- 自动驾驶---LSTM模型用于轨迹预测
智能汽车人
自动驾驶lstm人工智能自然语言处理
1前言在下面几篇博客中,笔者简单介绍过Transformer,Transformer的内部结构虽然比较清晰,但对于入门者来说还是复杂了一些。《人工智能---什么是Transformer?》《自动驾驶---视觉Transformer的应用》《自动驾驶---Parking端到端架构》中介绍的轨迹Decoder模块本篇博客和读者朋友们探讨一种比较早的模型(理解起来也相对容易一些):LSTM(LongSh
- 基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
图像识别人工智能深度学习
一、介绍害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)","蜜蜂(bees)","甲虫(beetle)","毛虫(catterpillar)","蚯蚓(earthworms)","蜚蠊(earwig)","蚱蜢(grasshopper)","飞蛾(moth)","鼻涕虫(slug)","蜗牛
- 详解:Grok中文版 _Grok 3 国内中文版本在线使用
人工智能
GrokAI是由XAI公司推出的一款尖端人工智能系统。作为该公司核心技术之一,GrokAI专注于推动人工智能在各行各业的实际应用,尤其在数据分析、自然语言处理(NLP)、自动化决策、机器学习等领域表现出色。Grok的最大亮点在于其强大的数据处理能力。它能够高效地从大量复杂数据中提取有价值的信息,并做出精准预测。借助深度学习与强化学习等先进技术,GrokAI具备自我学习的能力,可以通过不断的训练来优
- 基于OpenCV的Java人脸识别系统设计与实现
小呀白呀兔
javaspringboot
基于OpenCV的Java人脸识别系统设计与实现1.引言随着计算机视觉技术的发展,人脸识别在安全监控、身份验证等领域得到了广泛应用。本文将详细介绍如何使用OpenCV库和Java语言构建一个简单的人脸识别系统。该系统能够从图像中检测人脸,并通过深度学习模型提取特征进行比对,最终输出相似度评分及置信度等级。2.环境搭建为了确保项目顺利运行,请按照以下步骤配置开发环境:安装JDK:确保已安装JavaD
- 智能教育:DeepSeek在个性化学习中的创新应用与代码实现
Evaporator Core
#DeepSeek快速入门DeepSeek进阶开发与应用#深度学习学习
教育是塑造未来的基石,而个性化学习则是现代教育的重要趋势。随着人工智能技术的飞速发展,教育领域正迎来一场深刻的变革。DeepSeek作为人工智能领域的领军者,正在通过其强大的技术能力,推动个性化学习的创新应用。本文将结合代码实现,深入探讨DeepSeek在个性化学习中的应用。一、个性化学习路径:从数据到洞察个性化学习的核心在于根据学生的学习数据,生成定制化的学习路径。DeepSeek通过深度学习算
- 大白话聊聊“深度学习”和“大模型”
程序员鬼鬼
深度学习人工智能AI编程AIGCchatgptai
1950年图灵发表论文《计算机器与智能》(ComputingMachineryandIntelligence),提出了“机器智能”(MachineIntelligent)的概念,并且提出了著名的“图灵测试”的方法来判断机器是否有智能。1956年,达特茅斯会议,“人工智能”(ArtificialIntelligent)概念被首次提出,人工智能作为一个学科开始被研究。科学家梦想着未来可以用复杂物理结构
- 【精华推荐】AI大模型学习必逛的十大顶级网站
大模型入门学习
人工智能学习大模型入门llama大模型教程大模型学习大模型
随着人工智能技术的快速发展,AI大模型(如GPT-3、BERT等)在自然语言处理、计算机视觉等领域取得了显著的成果。对于希望深入学习AI大模型的开发者和研究者来说,找到合适的学习资源至关重要。本文将为大家推荐十大必备网站,帮助你更好地理解和应用AI大模型。1.CourseraCoursera是一个在线学习平台,提供各类AI和机器学习课程,包括斯坦福大学的机器学习课程和深度学习专项课程。通过视频讲解
- 深度学习分类回归(衣帽数据集)
何仙鸟
深度学习分类回归
一、步骤1加载数据集fashion_minst2搭建classNeuralNetwork模型3设置损失函数,优化器4编写评估函数5编写训练函数6开始训练7绘制损失,准确率曲线二、代码导包,打印版本号:importmatplotlibasmplimportmatplotlib.pyplotasplt%matplotlibinlineimportnumpyasnpimportsklearnimport
- Milvus 数据批量导入实战:Python代码解析
修破立生
Milvusmilvuspython人工智能
1引言在处理大规模数据的存储和检索时,向量数据库逐渐成为一种热门的解决方案。Milvus作为一款高性能的向量数据库,在人工智能、机器学习等领域有着广泛的应用。本文将介绍如何使用Python代码将数据批量导入到Milvus数据库中,通过实际的代码示例来帮助大家理解导入过程和相关的技术要点。2代码功能概述我们的代码主要实现了从本地文件读取数据,并将其批量导入到Milvus数据库的功能。代码涉及到命令行
- 基于RK3588的AI摄像头应用解决方案
浙江启扬智能科技有限公司
linuxARM嵌入式开发嵌入式硬件
随着人工智能(AI)技术的快速发展,越来越多的视频监控系统开始直接在摄像头上部署AI分析,视频监控从早期的图像记录发展到如今具备AI运算能力和算法,可进行目标识别、行为分析以及事件反馈,实现从被动记录到主动预警的转变。目前有三种算力部署方式:AI分析部署在云端、AI分析部署在边缘、AI分析部署在摄像头,也就是我们常说的云,边,端。但越来越多的摄像头本身就集成了AI分析能力,这一趋势的出现存在多方面
- AI江湖风云:GPT-4.5与Grok-3的巅峰对决
广拓科技
人工智能
在科技飞速发展的今天,人工智能领域的竞争可谓是一场没有硝烟的战争。各大科技巨头和新兴企业纷纷投入大量资源,力求在这个充满无限可能的领域中抢占先机。就在前不久,AI界发生了一件大事,OpenAI的明星产品GPT-4.5竟然被马斯克旗下xAI公司的Grok-3反超,这个消息犹如一颗重磅炸弹,瞬间在科技圈掀起了惊涛骇浪。大家纷纷猜测,这背后究竟隐藏着怎样的故事?Grok-3究竟凭什么能够后来居上,实现对
- OLMo 7B:推动自然语言处理领域的技术革新
单皎娥
OLMo7B:推动自然语言处理领域的技术革新OLMo-7B项目地址:https://gitcode.com/hf_mirrors/ai-gitcode/OLMo-7B引言随着人工智能技术的飞速发展,自然语言处理(NLP)领域取得了显著的进步。然而,在实际应用中,NLP技术仍然面临着诸多挑战,如语境理解、信息抽取、情感分析等。为了解决这些问题,艾伦人工智能研究所(AI2)推出了OLMo系列模型,其中
- 探索未来文本的无限可能:OLMo 开源语言模型深度解析
钟洁祺
探索未来文本的无限可能:OLMo开源语言模型深度解析OLMoModeling,training,eval,andinferencecodeforOLMo项目地址:https://gitcode.com/gh_mirrors/ol/OLMo在人工智能的浩瀚领域中,一个崭新的星体正在升起——OLMo:OpenLanguageModel。由AI2(艾伦人工智能研究所)的科学家们精心打造,OLMo不仅仅是
- 手写数字识别项目:从原理到实践
北屿升:
微信新浪微博facebook微信公众平台百度
在当今数字化时代,手写数字识别作为模式识别和人工智能领域的重要应用,有着广泛的用途,如邮政信封上的邮编识别、银行支票上的数字处理等。本文将详细介绍手写数字识别项目的相关内容,包括原理、数据集、实现步骤和应用前景。一、手写数字识别原理手写数字识别主要依赖于模式识别和机器学习技术。其基本原理是将手写数字的图像转换为计算机能够处理的数字信号,然后通过特征提取和分类算法来判断该数字的具体值。常用的特征提取
- Dolma:开源大规模语言模型预训练数据集与工具包
2401_87458718
语言模型人工智能自然语言处理
Dolma:开源大规模语言模型预训练数据集与工具包Dolma是由Allen人工智能研究所(AI2)开发的一个开源项目,旨在为大规模语言模型的预训练提供高质量的数据集和强大的数据处理工具。Dolma包含两个主要组成部分:Dolma数据集和Dolma工具包。Dolma数据集Dolma数据集是一个包含3万亿个token的开放数据集,涵盖了多样化的内容来源,包括网页内容、学术出版物、代码、书籍和百科全书材
- BP神经网络计算过程:从数学原理到实践优化
Acd_713
BP神经网络神经网络人工智能深度学习
引言:神经网络的时代意义与BP算法地位在深度学习重构人工智能边界的今天(Goodfellowetal.,2016),误差反向传播(Backpropagation,BP)算法作为神经网络训练的基石,其数学优雅性和工程实用性完美统一。本文将深入剖析BP神经网络的计算本质,揭示其如何在非线性空间中构建认知通道。第1章神经网络拓扑结构的数学建模1.1生物神经元到M-P模型的抽象跃迁McCulloch-Pi
- 成为LLM大师的必读书籍:这几本大模型书籍,详细到让你一篇文章就收藏足够
AGI大模型老王
产品经理大模型教程学习大模型人工智能LLM大模型书籍
以下是几本关于大模型和人工智能领域的经典书籍,它们各自具有独特的特点和适用人群:《深度学习》(DeepLearning)作者:伊恩·古德费洛(IanGoodfellow)、约书亚·本吉奥(YoshuaBengio)、亚伦·库维尔(AaronCourville)简介:《深度学习》是深度学习领域的经典之作,全面介绍了深度学习的基础知识、主要模型及其应用。书中详细讲解了神经网络、卷积神经网络、循环神经网
- 深度学习模型未来可能会在这些领域取得突破性进展
xinxiyinhe
人工智能深度学习人工智能深度学习模型深度学习
深度学习模型作为人工智能的核心技术之一,未来有望在多个领域取得突破性进展。以下是一些可能的方向:1.通用人工智能(AGI)目标:开发具有通用智能的模型,能够像人类一样处理多种任务。潜在突破:更强的推理和抽象能力,解决复杂问题。结合多模态数据(文本、图像、声音等)实现更全面的理解。自我学习和适应能力,减少对大量标注数据的依赖。2.医疗与生命科学目标:提升疾病诊断、药物研发和个性化治疗的水平。潜在突破
- 深度学习进阶:TensorFlow实战指南
ELSON麦香包
本文还有配套的精品资源,点击获取简介:《TensorFlow实战Google深度学习框架》详细指导读者学习TensorFlow,涵盖基础概念、数据流图、API使用、张量和变量操作,深度学习基础如CNN和RNN,以及自定义层和优化算法。书中还提供使用TensorFlow构建和训练深度学习模型的实例,包括AlexNet、VGG、ResNet以及LSTM和GRU,并通过图像分类和文本情感分析等实战案例,
- AI学习预备知识-数据操作(3)广播机制
羞涩的小吉他
人工智能学习
AI学习预备知识-数据操作(3)广播机制提示:本系列持续更新中文章目录AI学习预备知识-数据操作(3)广播机制前言广播机制总结前言随着开始人工智能的学习越来越多,那么再学习过程中,我们应该有一定的基础知识储备,本系列为基础知识储备介绍,在以往系列中我们提到了相同形状的张量按元素操作,那不同形状的张量操作就涉及到本文主要讲解AI学习储备知识–广播机制。广播机制提示:默认使用python,数据操作使用
- AI与.NET技术实操系列
胖头鱼不吃鱼-
人工智能.net
引言在当今技术飞速发展的时代,人工智能(ArtificialIntelligence,AI)已成为推动创新和变革的核心力量。从智能助手到自动化决策系统,AI的应用无处不在,深刻影响着我们的生活和工作方式。对于软件开发者而言,掌握AI技术不仅意味着紧跟潮流,更是在竞争激烈的市场中保持优势的关键。作为微软的旗舰开发平台,.NET为开发者提供了丰富的工具和库,使他们能够轻松地将AI功能集成到应用程序中。
- Python深度学习之路:TensorFlow与PyTorch对比
步入烟尘
Python超入门指南全册python深度学习tensorflow
本文已收录于《Python超入门指南全册》本专栏专门针对零基础和需要进阶提升的同学所准备的一套完整教学,从基础到精通不断进阶深入,后续还有实战项目,轻松应对面试,专栏订阅地址:https://blog.csdn.net/mrdeam/category_12647587.html优点:订阅限时19.9付费专栏,私信博主还可进入全栈VIP答疑群,作者优先解答机会(代码指导、远程服务),群里大佬众多可以
- 深度学习实战:TensorFlow 开源项目指南
劳治亮
深度学习实战:TensorFlow开源项目指南Deep-Learning-TensorFlow项目地址:https://gitcode.com/gh_mirrors/dee/Deep-Learning-TensorFlow项目介绍本项目基于GitHub仓库https://github.com/blackecho/Deep-Learning-TensorFlow.git,旨在提供一个全面的学习与开发
- html
周华华
html
js
1,数组的排列
var arr=[1,4,234,43,52,];
for(var x=0;x<arr.length;x++){
for(var y=x-1;y<arr.length;y++){
if(arr[x]<arr[y]){
&
- 【Struts2 四】Struts2拦截器
bit1129
struts2拦截器
Struts2框架是基于拦截器实现的,可以对某个Action进行拦截,然后某些逻辑处理,拦截器相当于AOP里面的环绕通知,即在Action方法的执行之前和之后根据需要添加相应的逻辑。事实上,即使struts.xml没有任何关于拦截器的配置,Struts2也会为我们添加一组默认的拦截器,最常见的是,请求参数自动绑定到Action对应的字段上。
Struts2中自定义拦截器的步骤是:
- make:cc 命令未找到解决方法
daizj
linux命令未知make cc
安装rz sz程序时,报下面错误:
[root@slave2 src]# make posix
cc -O -DPOSIX -DMD=2 rz.c -o rz
make: cc:命令未找到
make: *** [posix] 错误 127
系统:centos 6.6
环境:虚拟机
错误原因:系统未安装gcc,这个是由于在安
- Oracle之Job应用
周凡杨
oracle job
最近写服务,服务上线后,需要写一个定时执行的SQL脚本,清理并更新数据库表里的数据,应用到了Oracle 的 Job的相关知识。在此总结一下。
一:查看相关job信息
1、相关视图
dba_jobs
all_jobs
user_jobs
dba_jobs_running 包含正在运行
- 多线程机制
朱辉辉33
多线程
转至http://blog.csdn.net/lj70024/archive/2010/04/06/5455790.aspx
程序、进程和线程:
程序是一段静态的代码,它是应用程序执行的蓝本。进程是程序的一次动态执行过程,它对应了从代码加载、执行至执行完毕的一个完整过程,这个过程也是进程本身从产生、发展至消亡的过程。线程是比进程更小的单位,一个进程执行过程中可以产生多个线程,每个线程有自身的
- web报表工具FineReport使用中遇到的常见报错及解决办法(一)
老A不折腾
web报表finereportjava报表报表工具
FineReport使用中遇到的常见报错及解决办法(一)
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、address pool is full:
含义:地址池满,连接数超过并发数上
- mysql rpm安装后没有my.cnf
林鹤霄
没有my.cnf
Linux下用rpm包安装的MySQL是不会安装/etc/my.cnf文件的,
至于为什么没有这个文件而MySQL却也能正常启动和作用,在这儿有两个说法,
第一种说法,my.cnf只是MySQL启动时的一个参数文件,可以没有它,这时MySQL会用内置的默认参数启动,
第二种说法,MySQL在启动时自动使用/usr/share/mysql目录下的my-medium.cnf文件,这种说法仅限于r
- Kindle Fire HDX root并安装谷歌服务框架之后仍无法登陆谷歌账号的问题
aigo
root
原文:http://kindlefireforkid.com/how-to-setup-a-google-account-on-amazon-fire-tablet/
Step 4: Run ADB command from your PC
On the PC, you need install Amazon Fire ADB driver and instal
- javascript 中var提升的典型实例
alxw4616
JavaScript
// 刚刚在书上看到的一个小问题,很有意思.大家一起思考下吧
myname = 'global';
var fn = function () {
console.log(myname); // undefined
var myname = 'local';
console.log(myname); // local
};
fn()
// 上述代码实际上等同于以下代码
m
- 定时器和获取时间的使用
百合不是茶
时间的转换定时器
定时器:定时创建任务在游戏设计的时候用的比较多
Timer();定时器
TImerTask();Timer的子类 由 Timer 安排为一次执行或重复执行的任务。
定时器类Timer在java.util包中。使用时,先实例化,然后使用实例的schedule(TimerTask task, long delay)方法,设定
- JDK1.5 Queue
bijian1013
javathreadjava多线程Queue
JDK1.5 Queue
LinkedList:
LinkedList不是同步的。如果多个线程同时访问列表,而其中至少一个线程从结构上修改了该列表,则它必须 保持外部同步。(结构修改指添加或删除一个或多个元素的任何操作;仅设置元素的值不是结构修改。)这一般通过对自然封装该列表的对象进行同步操作来完成。如果不存在这样的对象,则应该使用 Collections.synchronizedList 方
- http认证原理和https
bijian1013
httphttps
一.基础介绍
在URL前加https://前缀表明是用SSL加密的。 你的电脑与服务器之间收发的信息传输将更加安全。
Web服务器启用SSL需要获得一个服务器证书并将该证书与要使用SSL的服务器绑定。
http和https使用的是完全不同的连接方式,用的端口也不一样,前者是80,后
- 【Java范型五】范型继承
bit1129
java
定义如下一个抽象的范型类,其中定义了两个范型参数,T1,T2
package com.tom.lang.generics;
public abstract class SuperGenerics<T1, T2> {
private T1 t1;
private T2 t2;
public abstract void doIt(T
- 【Nginx六】nginx.conf常用指令(Directive)
bit1129
Directive
1. worker_processes 8;
表示Nginx将启动8个工作者进程,通过ps -ef|grep nginx,会发现有8个Nginx Worker Process在运行
nobody 53879 118449 0 Apr22 ? 00:26:15 nginx: worker process
- lua 遍历Header头部
ronin47
lua header 遍历
local headers = ngx.req.get_headers()
ngx.say("headers begin", "<br/>")
ngx.say("Host : ", he
- java-32.通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小(两数组的差最小)。
bylijinnan
java
import java.util.Arrays;
public class MinSumASumB {
/**
* Q32.有两个序列a,b,大小都为n,序列元素的值任意整数,无序.
*
* 要求:通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小。
* 例如:
* int[] a = {100,99,98,1,2,3
- redis
开窍的石头
redis
在redis的redis.conf配置文件中找到# requirepass foobared
把它替换成requirepass 12356789 后边的12356789就是你的密码
打开redis客户端输入config get requirepass
返回
redis 127.0.0.1:6379> config get requirepass
1) "require
- [JAVA图像与图形]现有的GPU架构支持JAVA语言吗?
comsci
java语言
无论是opengl还是cuda,都是建立在C语言体系架构基础上的,在未来,图像图形处理业务快速发展,相关领域市场不断扩大的情况下,我们JAVA语言系统怎么从这么庞大,且还在不断扩大的市场上分到一块蛋糕,是值得每个JAVAER认真思考和行动的事情
- 安装ubuntu14.04登录后花屏了怎么办
cuiyadll
ubuntu
这个情况,一般属于显卡驱动问题。
可以先尝试安装显卡的官方闭源驱动。
按键盘三个键:CTRL + ALT + F1
进入终端,输入用户名和密码登录终端:
安装amd的显卡驱动
sudo
apt-get
install
fglrx
安装nvidia显卡驱动
sudo
ap
- SSL 与 数字证书 的基本概念和工作原理
darrenzhu
加密ssl证书密钥签名
SSL 与 数字证书 的基本概念和工作原理
http://www.linuxde.net/2012/03/8301.html
SSL握手协议的目的是或最终结果是让客户端和服务器拥有一个共同的密钥,握手协议本身是基于非对称加密机制的,之后就使用共同的密钥基于对称加密机制进行信息交换。
http://www.ibm.com/developerworks/cn/webspher
- Ubuntu设置ip的步骤
dcj3sjt126com
ubuntu
在单位的一台机器完全装了Ubuntu Server,但回家只能在XP上VM一个,装的时候网卡是DHCP的,用ifconfig查了一下ip是192.168.92.128,可以ping通。
转载不是错:
Ubuntu命令行修改网络配置方法
/etc/network/interfaces打开后里面可设置DHCP或手动设置静态ip。前面auto eth0,让网卡开机自动挂载.
1. 以D
- php包管理工具推荐
dcj3sjt126com
PHPComposer
http://www.phpcomposer.com/
Composer是 PHP 用来管理依赖(dependency)关系的工具。你可以在自己的项目中声明所依赖的外部工具库(libraries),Composer 会帮你安装这些依赖的库文件。
中文文档
入门指南
下载
安装包列表
Composer 中国镜像
- Gson使用四(TypeAdapter)
eksliang
jsongsonGson自定义转换器gsonTypeAdapter
转载请出自出处:http://eksliang.iteye.com/blog/2175595 一.概述
Gson的TypeAapter可以理解成自定义序列化和返序列化 二、应用场景举例
例如我们通常去注册时(那些外国网站),会让我们输入firstName,lastName,但是转到我们都
- JQM控件之Navbar和Tabs
gundumw100
htmlxmlcss
在JQM中使用导航栏Navbar是简单的。
只需要将data-role="navbar"赋给div即可:
<div data-role="navbar">
<ul>
<li><a href="#" class="ui-btn-active&qu
- 利用归并排序算法对大文件进行排序
iwindyforest
java归并排序大文件分治法Merge sort
归并排序算法介绍,请参照Wikipeida
zh.wikipedia.org/wiki/%E5%BD%92%E5%B9%B6%E6%8E%92%E5%BA%8F
基本思想:
大文件分割成行数相等的两个子文件,递归(归并排序)两个子文件,直到递归到分割成的子文件低于限制行数
低于限制行数的子文件直接排序
两个排序好的子文件归并到父文件
直到最后所有排序好的父文件归并到输入
- iOS UIWebView URL拦截
啸笑天
UIWebView
本文译者:candeladiao,原文:URL filtering for UIWebView on the iPhone说明:译者在做app开发时,因为页面的javascript文件比较大导致加载速度很慢,所以想把javascript文件打包在app里,当UIWebView需要加载该脚本时就从app本地读取,但UIWebView并不支持加载本地资源。最后从下文中找到了解决方法,第一次翻译,难免有
- 索引的碎片整理SQL语句
macroli
sql
SET NOCOUNT ON
DECLARE @tablename VARCHAR (128)
DECLARE @execstr VARCHAR (255)
DECLARE @objectid INT
DECLARE @indexid INT
DECLARE @frag DECIMAL
DECLARE @maxfrag DECIMAL
--设置最大允许的碎片数量,超过则对索引进行碎片
- Angularjs同步操作http请求with $promise
qiaolevip
每天进步一点点学习永无止境AngularJS纵观千象
// Define a factory
app.factory('profilePromise', ['$q', 'AccountService', function($q, AccountService) {
var deferred = $q.defer();
AccountService.getProfile().then(function(res) {
- hibernate联合查询问题
sxj19881213
sqlHibernateHQL联合查询
最近在用hibernate做项目,遇到了联合查询的问题,以及联合查询中的N+1问题。
针对无外键关联的联合查询,我做了HQL和SQL的实验,希望能帮助到大家。(我使用的版本是hibernate3.3.2)
1 几个常识:
(1)hql中的几种join查询,只有在外键关联、并且作了相应配置时才能使用。
(2)hql的默认查询策略,在进行联合查询时,会产
- struts2.xml
wuai
struts
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache