- 悦读声界·小说语音管理系统
大霸王龙
行业+领域+业务场景=定制人工智能小说转语音pythondjango管理系统
1.产品介绍产品名称:悦读声界·小说语音管理系统主要功能:智能语音朗读功能描述:用户可通过语音指令或简单点击,启动系统内置的AI语音引擎,自动将小说文本转化为流畅自然的语音朗读,支持多种语言及方言选择,满足不同用户的听觉偏好。使用方式:用户上传或选择平台内的小说资源后,选择朗读模式(如单章节、连续播放、定时关闭等),系统即刻开始朗读,同时支持语速、语调、角色声音等个性化设置。情感化语音演绎功能描述
- LLMR-NLUP 项目常见问题解决方案
金瑶苓Britney
LLMR-NLUP项目常见问题解决方案LLMR-NLUPAquickdemoofNatural-Language-UI-Programming,implementedpurelyonthefrontendandpoweredbyGPT-3.5项目地址:https://gitcode.com/gh_mirrors/ll/LLMR-NLUP一、项目基础介绍LLMR-NLUP是一个基于纯前端的自然语言用
- LLMR//https://github.com/microsoft/llmr?locale=zh-cn
开心就好啦~
windows
https://github.com/microsoft/llmr?locale=zh-cnIntroduction这个repo包含LLMR中描述的代码,实现了混合现实框架的大型语言模型。此软件包是“用语言创造世界”的原型,它允许通过自然语言实时创建具有视觉、行为和交互元素的对象、工具和场景。我们的框架将基于提示的生成与Unity相结合,使用户能够在运行时自发创建,这是VR自诞生以来的核心元素。该
- AI大模型教程入门到精通,非常详细收藏我这一篇就够了!AI大模型零基础入门教程(适合小白)
AGI大模型学习
人工智能大模型应用大模型AI产品经理学习AI大模型大模型教程
什么是AI大模型?AI大模型是指使用大规模数据和强大的计算能力训练出来的人工智能模型。这些模型通常具有高度的准确性和泛化能力,可以应用于各种领域,如自然语言处理、图像识别、语音识别等。为什么要学AI大模型?2024人工智能大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用,大模型作为其中的重要组成部分,正逐渐成为推动人工智能发展的重要引擎。大模型以其强大的数据处理和模式识别能力,广泛应用于
- DeepSeek-R1:通过强化学习激励大型语言模型的推理能力
AI专题精讲
大模型专题系列语言模型人工智能自然语言处理
摘要我们介绍了第一代推理模型DeepSeek-R1-Zero和DeepSeek-R1。DeepSeek-R1-Zero是一个通过大规模强化学习(RL)训练而成的模型,无需监督微调(SFT)作为初步步骤,展示了卓越的推理能力。通过RL,DeepSeek-R1-Zero自然涌现出许多强大而有趣的推理行为。然而,它也面临诸如可读性差和语言混合等挑战。为了解决这些问题并进一步提升推理性能,我们引入了Dee
- 【深度学习】Hopfield网络:模拟联想记忆
T-I-M
深度学习人工智能
Transformer优化,什么是稀疏注意力?Transformer模型自2017年被提出以来,已经成为自然语言处理(NLP)领域的核心架构,并在计算机视觉、语音处理等其他领域也取得了显著的成功。然而,随着模型规模的不断增大和任务复杂性的提升,Transformer的计算成本和内存需求也随之激增。为了解决这一问题,研究者们提出了多种优化方法,其中稀疏注意力(SparseAttention)是一种备
- DeepSeek 1.5B 蒸馏模型的征程 6 部署(Llama 方式)
自动驾驶算法
前言DeepSeek是一款基于人工智能的搜索引擎,旨在提升用户的搜索体验。它利用先进的自然语言处理技术,通过理解查询的上下文和意图,为用户提供更精确、相关的搜索结果。与传统的搜索引擎不同,DeepSeek不仅仅依赖于关键词匹配,还能通过深度学习分析用户的需求,呈现更加智能化的搜索结果。此外,DeepSeek还具备语义理解能力,能够处理复杂的查询,并在短时间内给出最符合用户需求的答案。DeepSee
- 探索vLLM Chat:作为OpenAI API替代方案的强大工具
qq_37836323
python
#探索vLLMChat:作为OpenAIAPI替代方案的强大工具##引言随着生成式AI技术的发展,许多应用都依赖于强大的语言模型API来提供自然语言处理任务的支持。vLLM是一款可以作为OpenAIAPI协议替代品的聊天模型服务器。它的设计允许您在应用中无缝替换OpenAIAPI,实现相似的功能和性能。本文将介绍如何使用vLLM,结合langchain-openai包,来快速部署和集成聊天模型。#
- AI大语言模型概述:从GPT到BERT的技术演进
AI智能涌现深度研究
AI大模型应用入门实战与进阶DeepSeekR1&大数据AI人工智能计算大数据人工智能语言模型AI大模型LLMJavaPython架构设计AgentRPA
1.背景介绍1.1什么是大语言模型大语言模型是一种基于深度学习的自然语言处理技术,它可以理解和生成人类语言。这些模型通过学习大量的文本数据,捕捉到语言的语法、语义和情感等信息,从而实现对自然语言的理解和生成。1.2为什么大语言模型如此重要大语言模型在近年来取得了显著的进展,它们在各种自然语言处理任务中都取得了最先进的性能。这些任务包括机器翻译、情感分析、文本摘要、问答系统等。大语言模型的成功在很大
- 完整指南:从基础到高级使用 Semantic Kernel
江沉晚呤时
NetcoreAIc#.netcore
SemanticKernel是微软推出的一款强大的开发框架,旨在帮助开发者通过语义理解和自然语言处理(NLP)构建智能应用。它为开发者提供了与OpenAI、AzureCognitiveServices等人工智能服务集成的简便接口,使得构建自然语言处理(NLP)应用变得更加直观和高效。在本文中,我们将从基础到高级全面讲解如何使用SemanticKernel,并提供详细的代码示例,帮助你快速掌握这个框
- 神经进化算法(Neuroevolution) 原理与代码实例讲解
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
神经进化算法,Neuroevolution,进化算法,深度学习,机器学习,遗传算法,神经网络,代码实例1.背景介绍在机器学习领域,神经网络凭借其强大的学习能力和泛化能力,在图像识别、自然语言处理、语音识别等领域取得了显著的成就。然而,传统的神经网络训练方法通常依赖于人工设计的网络结构和参数初始化,这往往需要大量的经验和试错,并且难以找到最优的网络结构和参数。神经进化算法(Neuroevolutio
- 【实战篇】DeepSeek + Cline 编程实战:从入门到“上头”
再见孙悟空_
【2025AI学习从零单排系列】【2025AI工具合集】DeepSeek+clineDeepSeekdeepseekclinedeepseek编程AI编程
嘿,小伙伴们!今天咱们来好好唠唠这个超火的组合——DeepSeek+Cline,看看它们在编程实战里到底能发挥多大的威力。要是你还在为写代码时的各种问题烦恼,那这篇文章绝对能帮到你!一、初识DeepSeek和ClineDeepSeek是啥?DeepSeek是杭州深度求索公司开发的一系列人工智能模型,特别擅长知识类任务。它能干的事儿可多了,像自然语言处理、代码生成、数据分析这些都不在话下。而且,De
- 强者联盟——Python语言结合Spark框架
博文视点
全栈工程师全栈全栈数据SparkPythonPySpark
引言:Spark由AMPLab实验室开发,其本质是基于内存的快速迭代框架,“迭代”是机器学习最大的特点,因此非常适合做机器学习。得益于在数据科学中强大的表现,Python语言的粉丝遍布天下,如今又遇上强大的分布式内存计算框架Spark,两个领域的强者走到一起,自然能碰出更加强大的火花(Spark可以翻译为火花),因此本文主要讲述了PySpark。本文选自《全栈数据之门》。全栈框架Spark由AMP
- 让 DeepSeek 更“聪明”:一键解析 PDF 和 Word 文档的 GUI 小工具,轻松处理复杂文档
Python测试之道
测试提效pythonpython人工智能测试用例
前言作为测试工程师或开发者,我们常常需要分析和处理PDF或Word文档中的内容,将关键信息提取出来并传递给AI模型进行进一步解析。DeepSeek-r1:1.5b是一款强大的语言模型,能够根据输入的自然语言进行推理和生成,但其原生本地部署环境并不支持直接上传文档进行解析。这就提出了一个问题:如何将PDF和Word文档的内容快速解析为文本,并传递给DeepSeek模型进行分析?为了弥补这个功能缺失,
- NLP自然语言处理——文本处理的基本方法
小村学长毕业设计
自然语言处理人工智能
NLP(自然语言处理)是人工智能领域的一个重要分支,它专注于使计算机能够理解和生成人类语言。文本处理是NLP中的基础且核心的部分,涉及多个步骤和技术,以确保原始文本数据能够被有效地转换、分析和利用。以下是对文本处理基本方法的详细探讨,包括文本预处理、文本表示、以及常见的NLP任务等。一、文本预处理文本预处理是NLP中的第一步,也是至关重要的一步。它主要包括以下几个子步骤:文本清洗:去除特殊字符:移
- NLP自然语言处理:文本表示总结 - 上篇word embedding(基于降维、基于聚类、CBOW 、Skip-gram、 NNLM 、TF-ID、GloVe )
陈宸-研究僧
NLP自然语言处理
文本表示分类(基于表示方法)离散表示one-hot表示词袋模型与TF-ID分布式表示基于矩阵的表示方法降维的方法聚类的方法基于神经网络的表示方法NNLMCBOWSkip-gramGloVeELMoGPTBERT目录一、文本离散表示1.1文本离散表示:one-hot1.2文本离散表示:词袋模型与TF-IDF1.2.1词袋模型(bagofwords)1.2.2对词袋模型的改进:TF-IDF二、文本分布
- 自然语言处理:文本表示
梦丶晓羽
pythonGloveWord2VecTF-IDF自然语言处理人工智能
介绍大家好,博主又来给大家分享知识了。今天给大家分享的内容是自然语言处理中的文本表示。在当今数字化信息爆炸的时代,自然语言处理作为人工智能领域的重要分支,发挥着越来越关键的作用。而文本表示,则是自然语言处理的基石之一,它就像是一把神奇的钥匙,能够将人类丰富多样、充满语义的自然语言,转化为计算机可以理解和处理的形式。话不多说,我们直接进入正题。文本表示概念阐述在自然语言处理(NLP)中,文本表示是将
- 本地部署 DeepSeek-R1-671B 满血版大模型
Physicaloser
人工智能人工智能语言模型ai
DeepSeek-R1大模型具备深度思考和推理能力,在数学、代码、自然语言推理等任务上都有着极大的提升。一方面由于官方或第三方的在线服务或多或少存在不稳定的问题,另一方面考虑到数据安全和隐私问题,本地私有化部署DeepSeek开源大模型对个人或企业来说也是一种不错的选择。本文主要介绍完整参数版本deepseek-r1-671b模型的部署和测试过程,对deepseek-v3-671b以及其他更小参数
- XLNet:超越BERT的新星
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
-XLNet:超越BERT的新星1.背景介绍1.1自然语言处理的重要性自然语言处理(NaturalLanguageProcessing,NLP)是人工智能领域的一个重要分支,旨在使计算机能够理解和生成人类语言。随着大数据时代的到来,海量的自然语言数据不断涌现,对NLP技术的需求与日俱增。NLP技术已广泛应用于机器翻译、智能问答、信息检索、情感分析等诸多领域,为人类生产和生活带来了巨大便利。1.2预
- 基于Dify大模型开发平台搭建业务应用场景
Python程序员罗宾
学习人工智能搜索引擎笔记github
一、Dify大模型可以搭建多种业务应用场景前排提示,文末有大模型AGI-CSDN独家资料包哦!主要应用场景包括:1.智能客服系统自动响应:利用大模型的自然语言处理能力,实现24/7的自动客户服务。问题分类与分配:准确识别用户问题类型,并将其路由到相应的服务团队。知识库构建:自动生成和维护企业级的知识库。2.个性化推荐引擎用户画像分析:深度挖掘用户的兴趣爱好和行为习惯。精准推荐:根据用户特征提供定制
- 快速上手 Unstructured:安装、Docker部署及PDF文档解析示例
大F的智能小课
大模型理论和实战dockerpdf容器
1.核心概念1.1Unstructured简介Unstructured是一个强大的Python库,专注于从非结构化数据中提取和预处理文本信息,广泛应用于PDF、Word文档、HTML等多种格式的文件处理。其核心功能包括分区、清理、暂存和分块,能够将复杂的非结构化文档转换为结构化输出,为后续的自然语言处理任务提供高质量的数据支持。分区功能:Unstructured能够将原始文档分解为标准的结构化元素
- 电商图书行业类目AI导购Agent系统详细设计与开发实战
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型LLM大模型落地实战指南计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍随着电子商务的蓬勃发展,图书行业也迎来了线上销售的黄金时代。然而,海量的图书种类、复杂的读者需求,使得用户在选购图书时常常面临选择困难。传统的搜索和推荐方式往往无法精准匹配用户的个性化需求,导致用户体验不佳,转化率低。为了解决这一痛点,AI导购Agent系统应运而生。该系统利用人工智能技术,模拟专业的图书导购员,为用户提供个性化的图书推荐和导购服务。通过深度学习、自然语言处理等技术,A
- 微调DeepSeek-R1-Distill-Llama-8B打造sql2text大模型!小白也能十分钟打造自己的推理大模型!unsloth+Colab轻松上手
X.Cristiano
DeepSeek-R1Llama-8Bsql2text人工智能
简介:DeepSeek-R1-Distill-Llama-8B是一个基于Llama架构的8B参数语言模型,经过深度蒸馏(distillation)处理,旨在提高推理效率和精度。通过蒸馏技术,模型在保持较高性能的同时,减少了计算资源的消耗,特别适合在资源受限的环境中应用。该模型经过优化,可用于多种自然语言处理任务,如文本生成、情感分析、问答系统等。DeepSeek-R1-Distill-Llama-
- 如何学习训练大模型——100条建议(附详细说明)_如何训练自己的大模型_大模型如何训练
大耳朵爱学习
人工智能语言模型产品经理大模型AI大模型
摘要:通过深入了解本文中的这些细节,并在实际项目中应用相关知识,将能够更好地理解和利用大模型的潜力,不仅在学术研究中,也在工程实践中。通过不断探索新方法、参与项目和保持热情,并将其应用于各种领域,从自然语言处理到计算机视觉和自动驾驶。通过不断学习、实践和探索,可以不断提升自己在深度学习领域的技能和洞察力,同时也能为社会和行业带来创新和改进。从小规模的项目和模型开始,逐渐迭代和扩展到更大的模型,逐步
- Transformer模型详解
Yuki-^_^
Transformer模型详解人工智能transformer深度学习人工智能
导读Transformer在许多的人工智能领域,如自然语言处理(NaturalLanguageProcessing,NLP)、计算机视觉(ComputerVision,CV)和语音处理(SpeechProcessing,SP)取得了巨大的成功。因此,自然而然的也吸引了许多工业界和学术界的研究人员的兴趣。到目前为止,已经提出了大量基于Transformer的相关工作和综述。本文基于邱锡鹏[1]老师近
- AIGC从入门到实战:探秘:ChatGPT 到底是什么
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1人工智能的浪潮近年来,人工智能(AI)发展迅猛,其应用已深入到各个领域,从自动驾驶汽车到智能家居,再到医疗诊断,AI正在改变我们的生活方式。其中,自然语言处理(NLP)作为AI的重要分支,近年来取得了显著进展,而AIGC(AI-GeneratedContent)正是NLP领域的一颗璀璨明珠。1.2AIGC的兴起AIGC指的是利用AI技术自动生成内容,包括文本、图像、音频、视频等。
- C# 牵手DeepSeek:打造本地AI超能力
步、步、为营
c#人工智能开发语言
一、引言在人工智能飞速发展的当下,大语言模型如DeepSeek正掀起新一轮的技术变革浪潮,为自然语言处理领域带来了诸多创新应用。随着数据隐私和安全意识的提升,以及对模型部署灵活性的追求,本地部署DeepSeek成为众多开发者和企业关注的焦点。对于C#开发者而言,将DeepSeek模型本地部署并集成到C#项目中,不仅能充分发挥C#语言在Windows平台开发的优势,还能实现高度定制化的人工智能应用,
- 自然语言处理:初识自然语言处理
梦丶晓羽
自然语言处理人工智能
介绍大家好,博主又来给大家分享知识了。从这次开始,博主给大家分享自然语言处理这个领域的内容。这也是博主非常感兴趣的研究领域。最开始,博主计划在自然语言处理系列的第一篇博文中,和大家聊聊文本规范化这个话题。毕竟在自然语言处理领域里,文本规范化是一项基础且重要的工作,它能让原始文本变得更整齐有序,便于后续的处理分析。但转念一想,对于刚接触自然语言处理的小伙伴们来说,对于自然语言处理肯定会有些陌生。要是
- 自然语言处理:文本规范化
梦丶晓羽
python自然语言处理人工智能NLTKBPE
介绍大家好!很高兴又能在这儿和大家分享自然语言处理相关的知识了。在上一篇发布于自然语言处理:初识自然语言处理-CSDN博客为大家初步介绍了自然语言处理的基本概念。而这次,我将进一步深入这个领域,和大家聊聊自然语言处理中一个关键的基础环节:文本规范化。好了,我们直接进入正题。文本规范化概念自然语言处理中的文本规范化,是指对原始文本进行一系列处理操作,使其具有统一、标准的格式和表达形式,以提高后续自然
- 2W8000字 LLM架构文章阅读指北
人工智能
大模型架构专栏已经更新了30多篇文章。完整的专栏内容欢迎订阅:LLM架构专栏1、LLM大模型架构专栏||从NLP基础谈起2、LLM大模型架构专栏||自然语言处理(NLP)之建模3、LLM大模型架构之词嵌入(Part1)3、LLM大模型架构之词嵌入(Part2)3、LLM大模型架构之词嵌入(Part3)4、LLM架构从基础到精通之Word2Vec训练全解析5、LLM架构从基础到精通之循环神经网络(R
- scala的option和some
矮蛋蛋
编程scala
原文地址:
http://blog.sina.com.cn/s/blog_68af3f090100qkt8.html
对于学习 Scala 的 Java™ 开发人员来说,对象是一个比较自然、简单的入口点。在 本系列 前几期文章中,我介绍了 Scala 中一些面向对象的编程方法,这些方法实际上与 Java 编程的区别不是很大。我还向您展示了 Scala 如何重新应用传统的面向对象概念,找到其缺点
- NullPointerException
Cb123456
androidBaseAdapter
java.lang.NullPointerException: Attempt to invoke virtual method 'int android.view.View.getImportantForAccessibility()' on a null object reference
出现以上异常.然后就在baidu上
- PHP使用文件和目录
天子之骄
php文件和目录读取和写入php验证文件php锁定文件
PHP使用文件和目录
1.使用include()包含文件
(1):使用include()从一个被包含文档返回一个值
(2):在控制结构中使用include()
include_once()函数需要一个包含文件的路径,此外,第一次调用它的情况和include()一样,如果在脚本执行中再次对同一个文件调用,那么这个文件不会再次包含。
在php.ini文件中设置
- SQL SELECT DISTINCT 语句
何必如此
sql
SELECT DISTINCT 语句用于返回唯一不同的值。
SQL SELECT DISTINCT 语句
在表中,一个列可能会包含多个重复值,有时您也许希望仅仅列出不同(distinct)的值。
DISTINCT 关键词用于返回唯一不同的值。
SQL SELECT DISTINCT 语法
SELECT DISTINCT column_name,column_name
F
- java冒泡排序
3213213333332132
java冒泡排序
package com.algorithm;
/**
* @Description 冒泡
* @author FuJianyong
* 2015-1-22上午09:58:39
*/
public class MaoPao {
public static void main(String[] args) {
int[] mao = {17,50,26,18,9,10
- struts2.18 +json,struts2-json-plugin-2.1.8.1.jar配置及问题!
7454103
DAOspringAjaxjsonqq
struts2.18 出来有段时间了! (貌似是 稳定版)
闲时研究下下! 貌似 sruts2 搭配 json 做 ajax 很吃香!
实践了下下! 不当之处请绕过! 呵呵
网上一大堆 struts2+json 不过大多的json 插件 都是 jsonplugin.34.jar
strut
- struts2 数据标签说明
darkranger
jspbeanstrutsservletScheme
数据标签主要用于提供各种数据访问相关的功能,包括显示一个Action里的属性,以及生成国际化输出等功能
数据标签主要包括:
action :该标签用于在JSP页面中直接调用一个Action,通过指定executeResult参数,还可将该Action的处理结果包含到本页面来。
bean :该标签用于创建一个javabean实例。如果指定了id属性,则可以将创建的javabean实例放入Sta
- 链表.简单的链表节点构建
aijuans
编程技巧
/*编程环境WIN-TC*/ #include "stdio.h" #include "conio.h"
#define NODE(name, key_word, help) \ Node name[1]={{NULL, NULL, NULL, key_word, help}}
typedef struct node { &nbs
- tomcat下jndi的三种配置方式
avords
tomcat
jndi(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。命名服务将名称和对象联系起来,使得我们可以用名称
访问对象。目录服务是一种命名服务,在这种服务里,对象不但有名称,还有属性。
tomcat配置
- 关于敏捷的一些想法
houxinyou
敏捷
从网上看到这样一句话:“敏捷开发的最重要目标就是:满足用户多变的需求,说白了就是最大程度的让客户满意。”
感觉表达的不太清楚。
感觉容易被人误解的地方主要在“用户多变的需求”上。
第一种多变,实际上就是没有从根本上了解了用户的需求。用户的需求实际是稳定的,只是比较多,也比较混乱,用户一般只能了解自己的那一小部分,所以没有用户能清楚的表达出整体需求。而由于各种条件的,用户表达自己那一部分时也有
- 富养还是穷养,决定孩子的一生
bijian1013
教育人生
是什么决定孩子未来物质能否丰盛?为什么说寒门很难出贵子,三代才能出贵族?真的是父母必须有钱,才能大概率保证孩子未来富有吗?-----作者:@李雪爱与自由
事实并非由物质决定,而是由心灵决定。一朋友富有而且修养气质很好,兄弟姐妹也都如此。她的童年时代,物质上大家都很贫乏,但妈妈总是保持生活中的美感,时不时给孩子们带回一些美好小玩意,从来不对孩子传递生活艰辛、金钱来之不易、要懂得珍惜
- oracle 日期时间格式转化
征客丶
oracle
oracle 系统时间有 SYSDATE 与 SYSTIMESTAMP;
SYSDATE:不支持毫秒,取的是系统时间;
SYSTIMESTAMP:支持毫秒,日期,时间是给时区转换的,秒和毫秒是取的系统的。
日期转字符窜:
一、不取毫秒:
TO_CHAR(SYSDATE, 'YYYY-MM-DD HH24:MI:SS')
简要说明,
YYYY 年
MM 月
- 【Scala六】分析Spark源代码总结的Scala语法四
bit1129
scala
1. apply语法
FileShuffleBlockManager中定义的类ShuffleFileGroup,定义:
private class ShuffleFileGroup(val shuffleId: Int, val fileId: Int, val files: Array[File]) {
...
def apply(bucketId
- Erlang中有意思的bug
bookjovi
erlang
代码中常有一些很搞笑的bug,如下面的一行代码被调用两次(Erlang beam)
commit f667e4a47b07b07ed035073b94d699ff5fe0ba9b
Author: Jovi Zhang <bookjovi@gmail.com>
Date: Fri Dec 2 16:19:22 2011 +0100
erts:
- 移位打印10进制数转16进制-2008-08-18
ljy325
java基础
/**
* Description 移位打印10进制的16进制形式
* Creation Date 15-08-2008 9:00
* @author 卢俊宇
* @version 1.0
*
*/
public class PrintHex {
// 备选字符
static final char di
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 利用cmd命令将.class文件打包成jar
chenyu19891124
cmdjar
cmd命令打jar是如下实现:
在运行里输入cmd,利用cmd命令进入到本地的工作盘符。(如我的是D盘下的文件有此路径 D:\workspace\prpall\WEB-INF\classes)
现在是想把D:\workspace\prpall\WEB-INF\classes路径下所有的文件打包成prpall.jar。然后继续如下操作:
cd D: 回车
cd workspace/prpal
- [原创]JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
comsci
eclipse设计模式算法工作swing
JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
&nb
- SecureCRT右键粘贴的设置
daizj
secureCRT右键粘贴
一般都习惯鼠标右键自动粘贴的功能,对于SecureCRT6.7.5 ,这个功能也已经是默认配置了。
老版本的SecureCRT其实也有这个功能,只是不是默认设置,很多人不知道罢了。
菜单:
Options->Global Options ...->Terminal
右边有个Mouse的选项块。
Copy on Select
Paste on Right/Middle
- Linux 软链接和硬链接
dongwei_6688
linux
1.Linux链接概念Linux链接分两种,一种被称为硬链接(Hard Link),另一种被称为符号链接(Symbolic Link)。默认情况下,ln命令产生硬链接。
【硬连接】硬连接指通过索引节点来进行连接。在Linux的文件系统中,保存在磁盘分区中的文件不管是什么类型都给它分配一个编号,称为索引节点号(Inode Index)。在Linux中,多个文件名指向同一索引节点是存在的。一般这种连
- DIV底部自适应
dcj3sjt126com
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- Centos6.5使用yum安装mysql——快速上手必备
dcj3sjt126com
mysql
第1步、yum安装mysql
[root@stonex ~]# yum -y install mysql-server
安装结果:
Installed:
mysql-server.x86_64 0:5.1.73-3.el6_5 &nb
- 如何调试JDK源码
frank1234
jdk
相信各位小伙伴们跟我一样,想通过JDK源码来学习Java,比如collections包,java.util.concurrent包。
可惜的是sun提供的jdk并不能查看运行中的局部变量,需要重新编译一下rt.jar。
下面是编译jdk的具体步骤:
1.把C:\java\jdk1.6.0_26\sr
- Maximal Rectangle
hcx2013
max
Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and return its area.
public class Solution {
public int maximalRectangle(char[][] matrix)
- Spring MVC测试框架详解——服务端测试
jinnianshilongnian
spring mvc test
随着RESTful Web Service的流行,测试对外的Service是否满足期望也变的必要的。从Spring 3.2开始Spring了Spring Web测试框架,如果版本低于3.2,请使用spring-test-mvc项目(合并到spring3.2中了)。
Spring MVC测试框架提供了对服务器端和客户端(基于RestTemplate的客户端)提供了支持。
&nbs
- Linux64位操作系统(CentOS6.6)上如何编译hadoop2.4.0
liyong0802
hadoop
一、准备编译软件
1.在官网下载jdk1.7、maven3.2.1、ant1.9.4,解压设置好环境变量就可以用。
环境变量设置如下:
(1)执行vim /etc/profile
(2)在文件尾部加入:
export JAVA_HOME=/home/spark/jdk1.7
export MAVEN_HOME=/ho
- StatusBar 字体白色
pangyulei
status
[[UIApplication sharedApplication] setStatusBarStyle:UIStatusBarStyleLightContent];
/*you'll also need to set UIViewControllerBasedStatusBarAppearance to NO in the plist file if you use this method
- 如何分析Java虚拟机死锁
sesame
javathreadoracle虚拟机jdbc
英文资料:
Thread Dump and Concurrency Locks
Thread dumps are very useful for diagnosing synchronization related problems such as deadlocks on object monitors. Ctrl-\ on Solaris/Linux or Ctrl-B
- 位运算简介及实用技巧(一):基础篇
tw_wangzhengquan
位运算
http://www.matrix67.com/blog/archives/263
去年年底写的关于位运算的日志是这个Blog里少数大受欢迎的文章之一,很多人都希望我能不断完善那篇文章。后来我看到了不少其它的资料,学习到了更多关于位运算的知识,有了重新整理位运算技巧的想法。从今天起我就开始写这一系列位运算讲解文章,与其说是原来那篇文章的follow-up,不如说是一个r
- jsearch的索引文件结构
yangshangchuan
搜索引擎jsearch全文检索信息检索word分词
jsearch是一个高性能的全文检索工具包,基于倒排索引,基于java8,类似于lucene,但更轻量级。
jsearch的索引文件结构定义如下:
1、一个词的索引由=分割的三部分组成: 第一部分是词 第二部分是这个词在多少