- Python深度学习实践:神经网络在异常检测中的应用
AI天才研究院
AI大模型企业级应用开发实战Python实战DeepSeekR1&大数据AI人工智能大模型javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
Python深度学习实践:神经网络在异常检测中的应用关键词:深度学习,神经网络,异常检测,Python,TensorFlow,PyTorch,模型优化,实战案例摘要:本文深入探讨了深度学习在异常检测领域的应用。通过Python实现的神经网络,本文介绍了深度学习的基本概念、核心算法、模型优化方法,并提供了详细的实战案例,包括数据预处理、模型训练和评估。读者将了解如何使用深度学习技术检测金融欺诈、网络
- AI 自动剪视频神器,小白也能轻松上手!
6v6-博客
人工智能
你是否为剪辑视频烦恼?今天推荐一款AI自动剪视频工具——易剪媒!✨软件介绍易剪媒是一款纯净无广告的AI自动剪视频工具,基于DeepSeek对话式AI技术(DS-V3模型)进行分析推理。只需根据描述的要求以处理命令的形式交给AI,即可自动输出视频。无需复杂操作,适合批量短视频处理和小白用户粗略剪辑等场景。✨软件功能批量视频处理:支持批量任务,可多线程并行处理。CPU本地算力加速:利用本地CPU加速处
- DeepSeek+Kimi
xjfgkf
mysqlsqliteoraclejson
DeepSeek与Kimi生成PPT全流程解析一、工具分工原理DeepSeek核心作用:生成结构化PPT大纲(擅长逻辑构建与内容优化)Kimi核心作用:将文本转换为视觉化PPT(提供模板库与排版引擎)二、操作步骤详解1.通过DeepSeek生成PPT大纲down输入提示词示例(需包含三要素)你是有10年经验的AI行业分析师,请为科技公司投资人制作一份30页的PPT,要求:首页包含主标题与3个核心论
- 不止排名,Google SEO 10 大核心心得分享
后端
原博客:https://bysocket.com/seo-tips-2025/在过去的一年中,我深入实践了GoogleSEO,积累了自己一些经验和看法。以下是我的实操心得,希望对大家有所帮助。1.SEO的本质:理解用户需求,提供有价值的内容SEO不仅仅是关键词堆砌或大量发布内容,而是要真正理解用户的搜索意图,提供他们需要的信息。就像写一本持续更新的畅销书,内容要有吸引力、易于获取,并值得推荐。2.
- 注塑行业信息化方案-基于MES与WMS系统的数字化升级方案
灏云科技MES|WMS|RPA
行业MES制造sql业界资讯创业创新远程工作
注塑行业信息化方案——基于MES与WMS系统的数字化升级方案---一、背景与需求分析中小型注塑企业普遍面临以下管理痛点:1.**生产透明度低**:依赖人工记录设备状态、生产进度,数据滞后且易出错。2.**资源浪费严重**:设备利用率不足(仅约80%)、原材料浪费、库存积压或短缺。3.**质量控制薄弱**:质量追溯困难,缺陷率居高不下,客户满意度低。4.**计划调度低效**:订单响应慢,插单/急单处
- 【HarmonyOS NEXT】自定义Tabs使其中间项突出显示
9级浪
鸿蒙鸿蒙harmonyos
【问题描述】要求中间的tabBar突出到内容处【效果图】【解决思路】使用Stack让中间项有能力突破tabBar区域使用Canvas绘制曲线【核心代码】@Entry@ComponentstructBuilderModifierCase{privatecontext:CanvasRenderingContext2D=newCanvasRenderingContext2D(newRenderingCo
- 【HarmonyOS NEXT】自定义Tabs使其中间项突出显示2
9级浪
鸿蒙harmonyos华为鸿蒙
【问题描述】要求中间的tabBar突出到内容处【上一版本】【HarmonyOSNEXT】自定义Tabs使其中间项突出显示,这个版本是我根据自己的当时的想法实现的,使用了Stack、Canvas实组件,虽然功能实现了,但是代码并不优雅。【当前版本】这个版本我参考了社区的方案AddressExchangeView.ets,我重写的一个版本。这个版本还顺带修复了特定条件下,未显示TabContent内容
- 思考–如何学习陌生的知识
后知后觉的先行者
思考学习
思考–如何学习陌生的知识面对新知识的学习,可以遵循以下系统化的方法,既提高效率又减少迷茫感:一、明确学习目标:打破“学什么都要学全”的误区核心原则二八定律:80%的实用场景只需掌握20%的核心知识。场景驱动:明确“学这个知识要解决什么问题?”(例如:学Python是为了数据分析还是自动化办公?)。快速定位重点通过行业标杆案例、岗位JD或技术文档,提取高频关键词(如“神经网络”之于AI、“API调用
- idea 进行多处同时编辑
tkgup
业务开发常见问题解决idea
使用Alt+Shift+左键点击即可使用Alt+J可选中下一个相同的词使用Alt+Shift+J取消一个选中使用Ctrl+Alt+Shift+J可选中所有相同的词进行同时编辑使用Alt+Shift+Insert开启列选择模式
- 大模型中的Token究竟是什么?从原理到作用深度解析
自然语言处理算法人工智能
引言在人工智能领域,大型语言模型(LLM)如GPT-4、Claude等系统性地改变了人机交互方式。这些模型处理文本的核心单元被称为"Token",这个看似简单的概念实则蕴含复杂的工程设计和语言学原理。本文将深入解析Token的本质、技术实现及其在模型运作中的关键作用。Token化技术全景图核心处理流程原始文本→预处理→分词算法→词表映射→模型输入↓↓↓大小写转换子词拆分策略特殊Token添加标点规
- 数据结构与算法必知基础知识
程序员bigsai
文章精选数据结构与算法数据结构算法数据结构与算法
原创公众号:bigsai文章已收录在全网都在关注的数据结构与算法学习仓库欢迎star前言数据结构与算法是程序员内功体现的重要标准之一,且数据结构也应用在各个方面,业界更有程序=数据结构+算法这个等式存在。各个中间件开发者,架构师他们都在努力的优化中间件、项目结构以及算法提高运行效率和降低内存占用,在这里数据结构起到相当重要的作用。此外数据结构也蕴含一些面向对象的思想,故学好掌握数据结构对逻辑思维处
- 如何借助RPA开启副业增收,挖掘财富密码?
IDFaucet
rpa
曾经,我在编程和工作的世界里四处碰壁,尤其是在处理一些需要将程序打包成EXE文件的任务时,复杂的编程知识和工具让我望而却步。每次面对那些密密麻麻的代码和晦涩难懂的操作指南,我都觉得自己与高效完成任务之间隔着一道无法逾越的鸿沟。深陷困境,渴望转机在工作中,常常会有将一些自动化脚本或小程序打包成可执行文件(EXE)的需求,方便在不同电脑上运行。但我这个编程小白,对传统的编程工具和打包方式一知半解。尝试
- 普通人也能轻松掌握的20个DeepSeek高频提示词(2025版)
deepseek
一、基础原则1️⃣说人话最重要"不用专业术语,就像和朋友聊天一样描述需求"。❌️错误示范:"请用SWOT分析法输出新能源汽车行业报告"。✅正确示范:"我要给老板汇报比亚迪谈判进展,完全不懂电池技术,请用买菜大妈都能听懂的话说明:他们的核心技术强在哪?报价大概多少?谈判时怎么装专业?"。2️⃣场景化公式"我要做___(具体事项),给___(使用对象)看,重点突出___(核心需求),担心___(潜在问
- SEO新手操作实战精要
老陈头聊SEO
SEO其他
内容概要在搜索引擎优化领域建立系统认知是新手突破入门瓶颈的关键。本指南以实战操作为核心脉络,从工具选择到执行路径层层拆解:首先建立SEO基础工具库,涵盖关键词挖掘、流量分析及竞争监测三类必备系统;其次聚焦站内优化黄金框架,详解标题(Title)、描述(Description)、关键词(Keywords)的权重配比与语义关联技巧;同时规划外链建设策略,梳理权威平台资源池与内容植入方法论。配合百度站长
- Prompt工程指南:从入门到精通,手把手教你玩转AI大模型!
AI大模型-大飞
prompt人工智能大模型教程AI大模型开源chatgpt大模型
一、什么是Prompt?Prompt是一种基于人工智能(AI)指令的技术,通过明确而具体的指导语言模型的输出。在提示词工程中,Prompt的定义涵盖了任务、指令和角色三个主要元素,以确保模型生成符合用户需求的文本。任务:Prompt明确而简洁地陈述了用户要求模型生成的内容。这包括在特定应用场景中,用户希望模型完成的任务或生成的文本类型。指令:模型在生成文本时应遵循的指令是Prompt中的关键要素之
- 词向量Word Embedding
m0_60217276
机器学习word2vec
词向量词向量做的事情就是将词表中的单词映射为实数向量。one-hot编码one-hot对每个词进行编号,假设词表的长度为n,则对于每一个词的表征向量均为一个n维向量,且只在其对应位置上的值为1,其他位置都是0。问题:1.有序性问题:它无法反映文本的有序性。2.语义鸿沟:其无法通过词向量来衡量相关词之间的距离关系,无法反映词之间的相似程度。3.维度灾难:高维情形下将导致数据样本稀疏,距离计算困难,这
- DeepSeek 超实用 50 个提示词大公开!生活、学习、工作全能助手
碳基学AI
生活学习人工智能ai大数据深度学习知识图谱
大家,是不是常常在生活里被各种琐事搞得焦头烂额,学习时遇到难题找不到方向,工作中忙得晕头转向却没个好思路?别愁啦!今天我必须把这50个DeepSeek超实用提示词分享给大家。不管是生活里的鸡毛蒜皮,学习上的提升需求,还是工作中的棘手问题,它都能轻松拿捏。赶紧先码住,说不定下一秒就能派上用场!生活实用:一站式解决生活难题1、宝子们,有没有像我一样经常熬夜,结果熬出了深深的熊猫眼,第二天还没精神的?“
- 凤凰架构-向微服务迈进
七路灯
读书架构架构
周志明《凤凰架构:构建可靠的大型分布式系统》https://icyfenix.cn/向微服务迈进,目的->前提->边界->治理目录目的:微服务的驱动力前提:微服务需要的条件边界:微服务的粒度治理:理解系统复杂性静态的治理发展的治理软件研发中任何一项技术、方法、架构都不可能是银弹。假如只能用一个词来形容微服务解决问题的核心思想,笔者给的答案就是“分治”,这即是微服务的基本特征,也是微服务应对复杂性的
- 【pyOCR】
星星向前看
python
pyOCR是什么pyOCR,全称PythonOpticalCharacterRecognition,是一个Python库,用于文本识别。它集成了多个OCR(光学字符识别)引擎,包括Tesseract、OCRopus等,让开发者能够方便地进行文本识别操作。pyOCR支持多种格式的文档,如PDF、JPEG、PNG等,并能够识别多种语言的文本。使用pyOCR,开发者可以轻松地将图片中的文字转换为机器可处
- 语义向量模型全解:从基础到现在的deepseek中的语义向量主流模型
来自于狂人
人工智能语言模型
一、语义向量模型:自然语言处理的基石语义向量模型(SemanticVectorModel)是自然语言处理(NLP)的核心技术,它将词汇、句子或文档映射为高维向量,在数学空间中量化语义信息。通过向量距离(如余弦相似度)衡量语义的相似性,支撑了搜索引擎、情感分析、机器翻译等实际应用。1.1发展简史1980s~2000s:基于统计的浅层模型,如TF-IDF(直接表征词的重要性)、LSA(通过矩阵分解降维
- DeepSeek 提示词技巧深度解析:从原理到实践
悠悠空谷1615
经验分享深度学习语言模型
深度掌握AI交互:DeepSeek提示词技巧全解析突破认知:重新理解AI对话的本质在与DeepSeek等大语言模型交互时,我们需要建立全新的对话范式。不同于人类对话的模糊性与容错性,AI对话遵循"输入决定输出"的确定性原则。统计数据显示,经过专业提示词训练的用户,其获取有效答案的成功率可提升300%以上。要实现这种质的飞跃,需要掌握以下核心认知:1.信息解码机制:AI通过token化处理理解文本,
- DeepSeek赋能生活全场景:20个职场人/学生/宝妈必备AI实践指南
小小鸭程序员
javapythonspringcloud云原生kafka
2024春节AI圈顶流:国产大模型DeepSeek持续霸屏!除技术解析外,更值得关注的是其在实际生活场景中的落地应用。本文整理20个高价值使用姿势,助你快速解锁AI助手生产力!一、学习成长加速器1.智能简历优化师使用场景:输入基础工作经历,自动生成ATS友好型简历,附带岗位关键词匹配与成就量化建议高阶技巧:上传JD文件,获取定制化简历修改报告2.论文架构大师核心功能:根据研究主题自动生成三级大纲框
- 创建者模式——单例模式
yiyiqwq
软件设计模式单例模式java
3.1单例模式(Singleton)单例模式(Singleton)是一种非常简单且容易理解的设计模式。顾名思义,单例即单一的实例,确切地讲就是指在某个系统中只存在一个实例,同时提供集中、统一的访问接口,以使系统行为保持协调一致。Singleton一词在逻辑学中指“有且仅有一个元素的集合”,这非常恰当地概括了单例的概念,也就是“一个类仅有一个实例”。单例模式涉及到类负责创建自己的对象,同时保证只有该
- MLM: 掩码语言模型的预训练任务
XianxinMao
语言模型人工智能自然语言处理
MLM:掩码语言模型的预训练任务掩码语言模型(MaskedLanguageModel,MLM)是一种用于训练语言模型的预训练任务,其核心目标是帮助模型理解和预测语言中的上下文关系。以下是对这一概念的详细说明:基本定义:MLM是一种通过将输入文本中的部分词语随机掩盖(即用掩码标记替代),让模型在观察到其他未掩盖词语的情况下,预测这些被掩盖词的任务。任务流程:首先,将一段文本输入到模型中。该文本的一部
- 如何使用DeepSeek进行高效数据挖掘与分析
Small踢倒coffee_氕氘氚
笔记经验分享迭代器模式
##摘要随着大数据时代的到来,数据挖掘与分析技术在各行各业中扮演着越来越重要的角色。DeepSeek作为一种先进的数据挖掘工具,能够帮助用户从海量数据中提取有价值的信息。本文将详细介绍DeepSeek的功能、使用方法及其在实际应用中的优势,旨在为用户提供一份全面的使用指南。##关键词DeepSeek、数据挖掘、数据分析、机器学习、大数据##引言###背景在当今信息爆炸的时代,数据已成为企业决策的重
- 清华大学《DeepSeek学习手册》(全6册),一键整合安装包本地部署教程
2501_90737257
人工智能pdf
资源链接:https://pan.quark.cn/s/e9b7230b1538清华这个手册真是与众不同!它先是给你讲清楚原理,然后手把手教你怎么科学地使用。它不只是告诉你怎么提问,还会告诉你为啥要这么问,这不就是教你怎么掌握提示词的底层逻辑嘛。这才是真正的“授人以渔”,太有用了!清华的专家们毫无保留,分享了超多实用技巧,从避免AI幻觉的小窍门,到设计超棒提示语的秘籍,共104页,全是能直接上手的
- 什么是预训练语言模型下游任务?
衣衣困
语言模型人工智能自然语言处理
问题:Word2Vec模型是预训练模型吗?由于训练的特性,word2Vec模型一定是与训练模型。给定一个词先使用独热编码然后使用预训练好的Q矩阵得到这个词的词向量。这里指的是词向量本身就是预训练的语言模型。什么是下游任务?在自然语言处理(NLP)和机器学习领域,下游任务(downstreamtasks)指的是使用已经训练好的模型或表示(如词向量、预训练的模型等)来解决的具体任务。这些任务通常依赖于
- AI辅助的企业估值报告生成器
AI智能涌现深度研究
DeepSeekR1&大数据AI人工智能人工智能ai
AI辅助的企业估值报告生成器关键词AI辅助估值企业估值报告数据处理机器学习算法报告生成器摘要本文将探讨如何利用人工智能技术辅助企业估值报告的生成。通过分析估值报告的重要性、AI技术在估值报告中的应用场景、估值模型与数据处理方法,以及机器学习算法在估值中的应用,本文旨在为企业和投资者提供一个高效、准确、可视化的估值报告生成解决方案。同时,本文还将介绍一个估值报告生成器的实现过程,并通过实际案例进行分
- 杰里米格兰瑟姆的资产定价理论
AI大模型应用之禅
DeepSeeklinux服务器运维ai
杰里米格兰瑟姆的资产定价理论关键词:资产定价理论、资本资产定价模型、套利定价理论、行为金融、数学模型摘要:杰里米格兰瑟姆的资产定价理论是现代金融领域的重要理论基础。本文将从资产定价理论的起源与发展、资本资产定价模型(CAPM)、套利定价理论(APT)、行为金融与资产定价等方面展开深入探讨,旨在全面解析格兰瑟姆的理论贡献和实际应用。目录大纲设计在撰写关于《杰里米格兰瑟姆的资产定价理论》的技术博客之前
- python读取word文档结构图_python根据文章标题内容自动生成摘分享的实例
weixin_39997664
如何用Python玩转TF-IDF之寻找相似文章并生成摘要应用1:关键词自动生成核心思想是对于某个文档中的某个词,计算其在这个文档中的标准化TF值,然后计算这个词在整个语料库中的标准化IDF值。在这里,标准化是说对原始的计算公式进行了一些变换以取得更好的衡量效果,并避免某些极端情况的出现。python从一个文件按文章标题把对应内容存为另外一问题如标题,例如有文件“A.txt”里面内容如上图,需按三
- HttpClient 4.3与4.3版本以下版本比较
spjich
javahttpclient
网上利用java发送http请求的代码很多,一搜一大把,有的利用的是java.net.*下的HttpURLConnection,有的用httpclient,而且发送的代码也分门别类。今天我们主要来说的是利用httpclient发送请求。
httpclient又可分为
httpclient3.x
httpclient4.x到httpclient4.3以下
httpclient4.3
- Essential Studio Enterprise Edition 2015 v1新功能体验
Axiba
.net
概述:Essential Studio已全线升级至2015 v1版本了!新版本为JavaScript和ASP.NET MVC添加了新的文件资源管理器控件,还有其他一些控件功能升级,精彩不容错过,让我们一起来看看吧!
syncfusion公司是世界领先的Windows开发组件提供商,该公司正式对外发布Essential Studio Enterprise Edition 2015 v1版本。新版本
- [宇宙与天文]微波背景辐射值与地球温度
comsci
背景
宇宙这个庞大,无边无际的空间是否存在某种确定的,变化的温度呢?
如果宇宙微波背景辐射值是表示宇宙空间温度的参数之一,那么测量这些数值,并观测周围的恒星能量输出值,我们是否获得地球的长期气候变化的情况呢?
&nbs
- lvs-server
男人50
server
#!/bin/bash
#
# LVS script for VS/DR
#
#./etc/rc.d/init.d/functions
#
VIP=10.10.6.252
RIP1=10.10.6.101
RIP2=10.10.6.13
PORT=80
case $1 in
start)
/sbin/ifconfig eth2:0 $VIP broadca
- java的WebCollector爬虫框架
oloz
爬虫
WebCollector主页:
https://github.com/CrawlScript/WebCollector
下载:webcollector-版本号-bin.zip将解压后文件夹中的所有jar包添加到工程既可。
接下来看demo
package org.spider.myspider;
import cn.edu.hfut.dmic.webcollector.cra
- jQuery append 与 after 的区别
小猪猪08
1、after函数
定义和用法:
after() 方法在被选元素后插入指定的内容。
语法:
$(selector).after(content)
实例:
<html>
<head>
<script type="text/javascript" src="/jquery/jquery.js"></scr
- mysql知识充电
香水浓
mysql
索引
索引是在存储引擎中实现的,因此每种存储引擎的索引都不一定完全相同,并且每种存储引擎也不一定支持所有索引类型。
根据存储引擎定义每个表的最大索引数和最大索引长度。所有存储引擎支持每个表至少16个索引,总索引长度至少为256字节。
大多数存储引擎有更高的限制。MYSQL中索引的存储类型有两种:BTREE和HASH,具体和表的存储引擎相关;
MYISAM和InnoDB存储引擎
- 我的架构经验系列文章索引
agevs
架构
下面是一些个人架构上的总结,本来想只在公司内部进行共享的,因此内容写的口语化一点,也没什么图示,所有内容没有查任何资料是脑子里面的东西吐出来的因此可能会不准确不全,希望抛砖引玉,大家互相讨论。
要注意,我这些文章是一个总体的架构经验不针对具体的语言和平台,因此也不一定是适用所有的语言和平台的。
(内容是前几天写的,现附上索引)
前端架构 http://www.
- Android so lib库远程http下载和动态注册
aijuans
andorid
一、背景
在开发Android应用程序的实现,有时候需要引入第三方so lib库,但第三方so库比较大,例如开源第三方播放组件ffmpeg库, 如果直接打包的apk包里面, 整个应用程序会大很多.经过查阅资料和实验,发现通过远程下载so文件,然后再动态注册so文件时可行的。主要需要解决下载so文件存放位置以及文件读写权限问题。
二、主要
- linux中svn配置出错 conf/svnserve.conf:12: Option expected 解决方法
baalwolf
option
在客户端访问subversion版本库时出现这个错误:
svnserve.conf:12: Option expected
为什么会出现这个错误呢,就是因为subversion读取配置文件svnserve.conf时,无法识别有前置空格的配置文件,如### This file controls the configuration of the svnserve daemon, if you##
- MongoDB的连接池和连接管理
BigCat2013
mongodb
在关系型数据库中,我们总是需要关闭使用的数据库连接,不然大量的创建连接会导致资源的浪费甚至于数据库宕机。这篇文章主要想解释一下mongoDB的连接池以及连接管理机制,如果正对此有疑惑的朋友可以看一下。
通常我们习惯于new 一个connection并且通常在finally语句中调用connection的close()方法将其关闭。正巧,mongoDB中当我们new一个Mongo的时候,会发现它也
- AngularJS使用Socket.IO
bijian1013
JavaScriptAngularJSSocket.IO
目前,web应用普遍被要求是实时web应用,即服务端的数据更新之后,应用能立即更新。以前使用的技术(例如polling)存在一些局限性,而且有时我们需要在客户端打开一个socket,然后进行通信。
Socket.IO(http://socket.io/)是一个非常优秀的库,它可以帮你实
- [Maven学习笔记四]Maven依赖特性
bit1129
maven
三个模块
为了说明问题,以用户登陆小web应用为例。通常一个web应用分为三个模块,模型和数据持久化层user-core, 业务逻辑层user-service以及web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和user-service
依赖作用范围
Maven的dependency定义
- 【Akka一】Akka入门
bit1129
akka
什么是Akka
Message-Driven Runtime is the Foundation to Reactive Applications
In Akka, your business logic is driven through message-based communication patterns that are independent of physical locatio
- zabbix_api之perl语言写法
ronin47
zabbix_api之perl
zabbix_api网上比较多的写法是python或curl。上次我用java--http://bossr.iteye.com/blog/2195679,这次用perl。for example: #!/usr/bin/perl
use 5.010 ;
use strict ;
use warnings ;
use JSON :: RPC :: Client ;
use
- 比优衣库跟牛掰的视频流出了,兄弟连Linux运维工程师课堂实录,更加刺激,更加实在!
brotherlamp
linux运维工程师linux运维工程师教程linux运维工程师视频linux运维工程师资料linux运维工程师自学
比优衣库跟牛掰的视频流出了,兄弟连Linux运维工程师课堂实录,更加刺激,更加实在!
-----------------------------------------------------
兄弟连Linux运维工程师课堂实录-计算机基础-1-课程体系介绍1
链接:http://pan.baidu.com/s/1i3GQtGL 密码:bl65
兄弟连Lin
- bitmap求哈密顿距离-给定N(1<=N<=100000)个五维的点A(x1,x2,x3,x4,x5),求两个点X(x1,x2,x3,x4,x5)和Y(
bylijinnan
java
import java.util.Random;
/**
* 题目:
* 给定N(1<=N<=100000)个五维的点A(x1,x2,x3,x4,x5),求两个点X(x1,x2,x3,x4,x5)和Y(y1,y2,y3,y4,y5),
* 使得他们的哈密顿距离(d=|x1-y1| + |x2-y2| + |x3-y3| + |x4-y4| + |x5-y5|)最大
- map的三种遍历方法
chicony
map
package com.test;
import java.util.Collection;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
public class TestMap {
public static v
- Linux安装mysql的一些坑
chenchao051
linux
1、mysql不建议在root用户下运行
2、出现服务启动不了,111错误,注意要用chown来赋予权限, 我在root用户下装的mysql,我就把usr/share/mysql/mysql.server复制到/etc/init.d/mysqld, (同时把my-huge.cnf复制/etc/my.cnf)
chown -R cc /etc/init.d/mysql
- Sublime Text 3 配置
daizj
配置Sublime Text
Sublime Text 3 配置解释(默认){// 设置主题文件“color_scheme”: “Packages/Color Scheme – Default/Monokai.tmTheme”,// 设置字体和大小“font_face”: “Consolas”,“font_size”: 12,// 字体选项:no_bold不显示粗体字,no_italic不显示斜体字,no_antialias和
- MySQL server has gone away 问题的解决方法
dcj3sjt126com
SQL Server
MySQL server has gone away 问题解决方法,需要的朋友可以参考下。
应用程序(比如PHP)长时间的执行批量的MYSQL语句。执行一个SQL,但SQL语句过大或者语句中含有BLOB或者longblob字段。比如,图片数据的处理。都容易引起MySQL server has gone away。 今天遇到类似的情景,MySQL只是冷冷的说:MySQL server h
- javascript/dom:固定居中效果
dcj3sjt126com
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&
- 使用 Spring 2.5 注释驱动的 IoC 功能
e200702084
springbean配置管理IOCOffice
使用 Spring 2.5 注释驱动的 IoC 功能
developerWorks
文档选项
将打印机的版面设置成横向打印模式
打印本页
将此页作为电子邮件发送
将此页作为电子邮件发送
级别: 初级
陈 雄华 (quickselect@163.com), 技术总监, 宝宝淘网络科技有限公司
2008 年 2 月 28 日
&nb
- MongoDB常用操作命令
geeksun
mongodb
1. 基本操作
db.AddUser(username,password) 添加用户
db.auth(usrename,password) 设置数据库连接验证
db.cloneDataBase(fromhost)
- php写守护进程(Daemon)
hongtoushizi
PHP
转载自: http://blog.csdn.net/tengzhaorong/article/details/9764655
守护进程(Daemon)是运行在后台的一种特殊进程。它独立于控制终端并且周期性地执行某种任务或等待处理某些发生的事件。守护进程是一种很有用的进程。php也可以实现守护进程的功能。
1、基本概念
&nbs
- spring整合mybatis,关于注入Dao对象出错问题
jonsvien
DAOspringbeanmybatisprototype
今天在公司测试功能时发现一问题:
先进行代码说明:
1,controller配置了Scope="prototype"(表明每一次请求都是原子型)
@resource/@autowired service对象都可以(两种注解都可以)。
2,service 配置了Scope="prototype"(表明每一次请求都是原子型)
- 对象关系行为模式之标识映射
home198979
PHP架构企业应用对象关系标识映射
HELLO!架构
一、概念
identity Map:通过在映射中保存每个已经加载的对象,确保每个对象只加载一次,当要访问对象的时候,通过映射来查找它们。其实在数据源架构模式之数据映射器代码中有提及到标识映射,Mapper类的getFromMap方法就是实现标识映射的实现。
二、为什么要使用标识映射?
在数据源架构模式之数据映射器中
//c
- Linux下hosts文件详解
pda158
linux
1、主机名: 无论在局域网还是INTERNET上,每台主机都有一个IP地址,是为了区分此台主机和彼台主机,也就是说IP地址就是主机的门牌号。 公网:IP地址不方便记忆,所以又有了域名。域名只是在公网(INtERNET)中存在,每个域名都对应一个IP地址,但一个IP地址可有对应多个域名。 局域网:每台机器都有一个主机名,用于主机与主机之间的便于区分,就可以为每台机器设置主机
- nginx配置文件粗解
spjich
javanginx
#运行用户#user nobody;#启动进程,通常设置成和cpu的数量相等worker_processes 2;#全局错误日志及PID文件#error_log logs/error.log;#error_log logs/error.log notice;#error_log logs/error.log inf
- 数学函数
w54653520
java
public
class
S {
// 传入两个整数,进行比较,返回两个数中的最大值的方法。
public
int
get(
int
num1,
int
nu